18 resultados para number of kids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immunoglobulin G (IgG) uptake and enterocyte nucleus position in the villous were studied in newborn goat kids fed goat or lyophilized bovine colostrum. Two groups of 15 newborn goat kids, each received 5% of body weight of goat colostrum (GC) or lyophilized bovine colostrum (LBC) containing 55 mg/mL of immunoglobulin G (IgG) at 0, 7 and 14 h of life. Three animals were sampled just after birth, receiving no colostrum intake, to be used as control. Samples of duodenum, medium jejunum and ileum were collected at 0, 18, 36 and 96 h of life. IgG vacuoles were not observed in the duodenum throughout the experiment regardless of all the experimental time points. In this segment, at 0, 18 and 36 h of life, nuclei were found in the apical, medial and basal positions in the enterocytes, and localized in the upper, medial and lower parts in the villous, respectively. At 96 h, a basal nuclei position was observed in the enterocytes, throughout the villous. In jejunum, IgG vacuoles were distributed along the villous at 18 and 36 h. In this segment at Oh the nuclei were positioned predominantly apically in the enterocytes, throughout the villous. At 18 and 36 h, no consistent nuclei pattern was verified: however at 96 h, the nuclei were positioned basally in the enterocytes, throughout the jejunal villous. In the ileum at 0, 18 and 36 h, a great number of vacuoles without IgG were verified in the medial-apical part of the villous. In this segment, at Oh of life and 96 h of life, the predominance of basal nuclei was observed. Nuclei were positioned in medial-apically part of the ileal enterocytes in the upper part of the villous at 18 and 36 h. It was found that the jejunal epithelium was the most important segment related to absorption process. The IgG absorption and nucleus position in the newborn goats were dependent on the small intestine segments and experimental time points, regardless of the colostrum source. GC or LCB. Considering the IgG uptake mechanism observed in the present study, the lyophilized bovine colostrum might be used instead of goat colostrum. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mach number and thermal effects on the mechanisms of sound generation and propagation are investigated in spatially evolving two-dimensional isothermal and non-isothermal mixing layers at Mach number ranging from 0.2 to 0.4 and Reynolds number of 400. A characteristic-based formulation is used to solve by direct numerical simulation the compressible Navier-Stokes equations using high-order schemes. The radiated sound is directly computed in a domain that includes both the near-field aerodynamic source region and the far-field sound propagation. In the isothermal mixing layer, Mach number effects may be identified in the acoustic field through an increase of the directivity associated with the non-compactness of the acoustic sources. Baroclinic instability effects may be recognized in the non-isothermal mixing layer, as the presence of counter-rotating vorticity layers, the resulting acoustic sources being found less efficient. An analysis based on the acoustic analogy shows that the directivity increase with the Mach number can be associated with the emergence of density fluctuations of weak amplitude but very efficient in terms of noise generation at shallow angle. This influence, combined with convection and refraction effects, is found to shape the acoustic wavefront pattern depending on the Mach number.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of the anisotropy parameter v(2) of identified hadrons (pions, kaons, and protons) as a function of centrality, transverse momentum p(T), and transverse kinetic energy KET at midrapidity (vertical bar eta vertical bar < 0.35) in Au + Au collisions at root s(N N) = 200 GeV are presented. Pions and protons are identified up to p(T) = 6 GeV/c, and kaons up to p(T) = 4 GeV/c, by combining information from time-of-flight and aerogel Cerenkov detectors in the PHENIX Experiment. The scaling of v(2) with the number of valence quarks (n(q)) has been studied in different centrality bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observed quark-number scaling is observed at large values of KET/n(q) in noncentral Au + Au collisions (20-60%), but this scaling remains valid in central collisions (0-10%).