19 resultados para nuclear potential energy surface
Resumo:
Suramin is a polysulphonated naphthylurea with inhibitory activity against the human secreted group IIA phospholipase A(2) (hsPLA2GIIA), and we have investigated suramin binding to recombinant hsPLA2GIIA using site-directed mutagenesis and molecular dynamics (MD) simulations. The changes in suramin binding affinity of 13 cationic residue mutants of the hsPLA2GIIA was strongly correlated with alterations in the inhibition of membrane damaging activity of the protein. Suramin binding to hsPLA2GIIA was also studied by MD simulations, which demonstrated that altered intermolecular potential energy of the suramin/mutant complexes was a reliable indicator of affinity change. Although residues in the C-terminal region play a major role in the stabilization of the hsPLA2GIIA/suramin complex, attractive and repulsive hydrophobic and electrostatic interactions with residues throughout the protein together with the adoption of a bent suramin conformation, all contribute to the stability of the complex. Analysis of the h5PLA2GIIA/suramin interactions allows the prediction of the properties of suramin analogues with improved binding and higher affinities which may be candidates for novel phospholipase A(2) inhibitors. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Volatile fatty acids (VFA) absorption and metabolic capacity of rumen and omasum were compared, in vitro. Fragments of rumen wall and omasum laminae were taken from eight adult crossbred bovines. An isolated fragment of the mucosa was fitted in a tissue diffusion chamber. Valeric acid and CrEDTA were added to ruminal fluid and placed on the mucosal side and buffer solution was placed on the serosal side. Fractional absorption rates were measured by exponential VFA:Cr ratio decay over time. Metabolism rate was determined as the difference between VFA absorbed and VFA which appeared on the serosal side over time. Mitotic index was higher in omasum (0.52%) than in rumen epithelium (0.28%). VFA fractional absorption rate was higher in omasum (4.6%/h.cm²) than in rumen (0.4%/h.cm²). Acetate, propionate, butyrate, and valerate showed similar fractional absorption rates in both fragments. Percentage of metabolized acetate and propionate was lower than butyrate and valerate in both stomach compartments. In the rumen, individual VFA metabolism rates were similar (mean of 7.7 , but in the omasum, valerate (90.0 was more metabolized than butyrate (59.6 propionate (69.8 and acetate (51.7 . Correlation between VFA metabolism and mitotic index was positive in the rumen and in the omasum. In conclusion, VFA metabolism and absorption potential per surface of the omasum is higher than that of the rumen. Variations on rumen and omasum absorption capacities occur in the same way, and there are indications that factors capable of stimulating rumen wall proliferation are similarly capable of stimulating omasum walls.
Resumo:
The formation of the aluminium monofluoride molecule AlF by radiative association of the Al and F atoms is estimated. The radiative association of Al(2P) and F(2P) atoms is found to be dominated by the approach along theA1 potential energy curve accompanied by spontaneous emission into theX1 + ground state of the AlF. For temperatures ranging from 300 to 14 000 K, the rate coefficients are found to vary from 1.35×10−17 to 9.31×10−16 cm3 s−1, respectively.These values indicate that only a small amount of AlF molecules can be formed by radiative association in the inner envelope of carbon-rich stars and other hostile environments.
Resumo:
In this work, we have used a combined of atomistic simulation methods to explore the effects of confinement of water molecules between silica surfaces. Firstly, the mechanical properties of water severe confined (~3A) between two silica alpha-quartz was determined based on first principles calculations within the density functional theory (DFT). Simulated annealing methods were employed due to the complex potential energry surface, and the difficulties to avoid local minima. Our results suggest that much of the stiffness of the material (46%) remains, even after the insertion of a water monolayer in the silica. Secondly, in order to access typical time scales for confined systems, classical molecular dynamics was used to determine the dynamical properties of water confined in silica cylindrical pores, with diameters varying from 10 to 40A. in this case we have varied the passivation of the silica surface, from 13% to 100% of SiOH, and the other terminations being SiOH2 and SiOH3, the distribution of the different terminations was obtained with a Monte Carlo simulation. The simulations indicates a lowering of the diffusion coefficientes as the diameter decreases, due to the structuration of hydrogen bonds of water molecules; we have also obtained the density profiles of the confined water and the interfacial tension.