23 resultados para mammalian target of rapamycin inhibitor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The malaria parasite Plasmodium falciparum is able to synthesize de novo PLP (pyridoxal 5'-phosphate), the active form of vitamin B-6. In the present study, we have shown that the de novo synthesized PLP is used by the parasite to detoxify O-1(2) (singlet molecular oxygen), a highly destructive reactive oxygen species arising from haemoglobin digestion. The formation of O-1(2) and the response of the parasite were monitored by live-cell fluorescence microscopy, by transcription analysis and by determination of PLP levels in the parasite. Pull-down experiments of transgenic parasites overexpressing the vitamin B-6-biosynthetic enzymes PfPdx1 and PfPdx2 clearly demonstrated an interaction of the two proteins in vivo which results in an elevated PLP level from 12.5 mu M in wild-type parasites to 36.6 mu M in the PfPdx1/PfPdx2-overexpressing cells and thus to a higher tolerance towards O-1(2). In contrast, by applying the dominant-negative effect on the cellular level using inactive mutants of PfPdx1 and PfPdx2, P. falciparum becomes susceptible to O-1(2). Our results demonstrate clearly the crucial role of vitamin B-6 biosynthesis in the detoxification of O-1(2) in P falciparum. Besides the known role of PLP as a cofactor of many essential enzymes, this second important task of the vitamin B-6 de novo synthesis as antioxidant emphasizes the high potential of this pathway as a target of new anti-malarial drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancers of the upper aerodigestive tract (UADT) are common forms of malignancy associated with tobacco and alcohol exposures, although human papillomavirus and nutritional deficiency are also important risk factors. While somatically acquired DNA methylation changes have been associated with UADT cancers, what triggers these events and precise epigenetic targets are poorly understood. In this study, we applied quantitative profiling of DNA methylation states in a panel of cancer-associated genes to a case-control study of UADT cancers. Our analyses revealed a high frequency of aberrant hypermethylation of several genes, including MYOD1, CHRNA3 and MTHFR in UADT tumors, whereas CDKN2A was moderately hypermethylated. Among differentially methylated genes, we identified a new gene (the nicotinic acetycholine receptor gene) as target of aberrant hypermethylation in UADT cancers, suggesting that epigenetic deregulation of nicotinic acetycholine receptors in non-neuronal tissues may promote the development of UADT cancers. Importantly, we found that sex and age is strongly associated with the methylation states, whereas tobacco smoking and alcohol intake may also influence the methylation levels in specific genes. This study identifies aberrant DNA methylation patterns in UADT cancers and suggests a potential mechanism by which environmental factors may deregulate key cellular genes involved in tumor suppression and contribute to UADT cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Dengue is the most important arbovirus disease in tropical and subtropical countries. The viral envelope (E) protein is responsible for cell receptor binding and is the main target of neutralizing antibodies. The aim of this study was to analyze the diversity of the E protein gene of DENV-3. E protein gene sequences of 20 new viruses isolated in Ribeirao Preto, Brazil, and 427 sequences retrieved from GenBank were aligned for diversity and phylogenetic analysis. Results Comparison of the E protein gene sequences revealed the presence of 47 variable sites distributed in the protein; most of those amino acids changes are located on the viral surface. The phylogenetic analysis showed the distribution of DENV-3 in four genotypes. Genotypes I, II and III revealed internal groups that we have called lineages and sub-lineages. All amino acids that characterize a group (genotype, lineage, or sub-lineage) are located in the 47 variable sites of the E protein. Conclusion Our results provide information about the most frequent amino acid changes and diversity of the E protein of DENV-3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background About 130 million people are infected with the hepatitis C virus (HCV) worldwide, but effective treatment options are not yet available. One of the most promising targets for antiviral therapy is nonstructural protein 3 (NS3). To identify possible changes in the structure of NS3 associated with virological sustained response or non-response of patients, a model was constructed for each helicase NS3 protein coding sequence. From this, the goal was to verify the interaction between helicases variants and their ligands. Findings Evidence was found that the NS3 helicase portion of non-responder patients contained substitutions in its ATP and RNA binding sites. K210E substitution can cause an imbalance in the distribution of loads, leading to a decrease in the number of ligations between the essential amino acids required for the hydrolysis of ATP. W501R substitution causes an imbalance in the distribution of loads, leading and forcing the RNA to interact with the amino acid Thr269, but not preventing binding of ribavirin inhibitor. Conclusions Useful information is provided on the genetic profiling of the HCV genotype 3, specifically the coding region of the NS3 protein, improving our understanding of the viral genome and the regions of its protein catalytic site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hancornia speciosa Gomes is a fruit tree native from Brazil that belongs to Apocinaceae family, and is popularly known as Mangabeira. Its fruits are widely consumed raw or processed as fruit jam, juices and ice creams, which have made it a target of intense exploitation. The extractive activities and intense human activity on the environment of natural occurrence of H. speciosa has caused genetic erosion in the species and little is known about the ecology or genetic structure of natural populations. The objective of this research was the evaluation of the genetic diversity and genetic structure of H. speciosa var. speciosa. The genetic variability was assessed using 11 allozyme loci with a sample of 164 individuals distributed in six natural populations located in the States of Pernambuco and Alagoas, Northeastern Brazil. The results showed a high level of genetic diversity within the species (e= 0.36) seeing that the most of the genetic variability of H. speciosa var. speciosa is within its natural populations with low difference among populations ( or = 0.081). The inbreeding values within ( = -0.555) and among populations ( =-0.428) were low showing lacking of endogamy and a surplus of heterozygotes. The estimated gene flow ( m ) was high, ranging from 2.20 to 13.18, indicating to be enough to prevent the effects of genetic drift and genetic differentiation among populations. The multivariate analyses indicated that there is a relationship between genetic and geographical distances, which was confirmed by a spatial pattern analysis using Mantel test (r = 0.3598; p = 0.0920) with 1000 random permutations. The high genetic diversity index in these populations indicates potential for in situ genetic conservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment. Methods Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry. Results Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 μg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 μg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects. Conclusion Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE, naïve lymphocyte populations die by apoptosis in a caspase-3- and caspase-8-dependent pathway, while memory cells are selectively more resistant to its effects. The present work contributes to elucidate the activities of A. aegypti salivary molecules on the antigen presenting cell-lymphocyte axis and in the biology of these cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dasyatis guttata has been target of artisanal fisheries in the coast of Bahia (Northeast Brazil) mainly by “arraieira” (gillnet) and “grozeira” (bottom long-line), but until now there is no stock assessment study. One of the important data for this knowledge is reliable indices of abundance. The aims of the present work are to: (1) estimate the best predictor for relative abundance (catch-per-unit-of-effort, CPUE), examining whether catch (production – kg) was related to: soak time of the gear, size of the gillnet or number of hooks, applying generalized linear model (GLM); (2) estimate the annual CPUE (kg/hooks and kg/m) averaged by gear; and (3) assess the temporal CPUE variance. Based on monthly sampling between January 2012 and January 2013, 222 landings by grozeira and 76 by arraiaiera were recorded in the two landing sites in Todos os Santos Bay, Bahia. A total of 14,550 kg (average = 44 kg/month) of D. guttata was captured. Models for both gears were highly significant (P < 0.0001). The analysis indicated that the most appropriate variable for CPUE analysis was the size of the gillnet (P < 0.001) and the number of hooks (P < 0.0001). Soak time of the gear was not significant for both gears (P = 0.4). High residual deviance expresses the complexity of the relations between ecosystem factors and other fisheries factors affecting relative abundance, which were not considered in this study. The average CPUE by grozeira was 6.39 kg/100 hooks ± 8.89 and by arraieira, 1.47 kg/100 m ± 1.66 over the year. Kruskal-Wallis test showed effect of the month on the mean grozeira CPUE (P = <0.001), but no effect (P = 0.096) on the mean arraieira CPUE. Grozeira CPUE values were highest in December and March, and lowest between May to August

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment. METHODS: Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry. RESULTS: Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 μg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 μg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects. CONCLUSION: Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE, naïve lymphocyte populations die by apoptosis in a caspase-3- and caspase-8-dependent pathway, while memory cells are selectively more resistant to its effects. The present work contributes to elucidate the activities of A. aegypti salivary molecules on the antigen presenting cell-lymphocyte axis and in the biology of these cells.