20 resultados para magnetic materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected theoretical predictions. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi. org/10.1063/1.4739533]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the advancement of magnetic ionic liquids (MILs) as stable dispersions of surface-modified gamma-Fe2O3, Fe3O4, and CoFe2O4 magnetic nanoparticles (MNPs) in a hydrophobic ionic liquid, 1-n-butyl 3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2). The MNPs were obtained via coprecipitation and were characterized using powder X-ray diffraction, transmission electron microscopy, Raman spectroscopy and Fourier transform near-infrared (FT-NIR) spectroscopy, and magnetic measurements. The surface-modified MNPs (SM-MNPs) were obtained via the silanization of the MNPs with the aid of 1-butyl-3[3-(trimethoxysilyl)propyl]imidazolium chloride (BMSPI.Cl). The SM-MNPs were characterized by Raman spectroscopy and Fourier trail: form infrared attenuated total reflectance (FTIR-ATR) spectroscopy and by magnetic measurements. The FTIR-ATR spectra of the SM-MNPs exhibited characteristic absorptions of the imidazolium and those of the Fe-O-Si-C moieties, confirming the presence of BMSPI.Cl on the MNP surface. Thermogravimetric analysis (TGA) showed that the SM-MNPs were modified by at least one BMSPI.Cl monolayer. The MILs were characterized using Raman spectroscopy, differential scanning calorimetry (DSC), and magnetic measurements. The Raman and DSC results indicated an interaction between the SM-MNPs and the IL. This interaction promotes the formation of a supramolecular structure close to the MNP surface that mimics the IL structure and is responsible for the stability of the MIL. Magnetic measurements of the MILs indicated no hysteresis. Superparamagnetic behavior and a saturation magnetization of similar to 22 emu/g could be inferred from the magnetic measurements of a sample containing 50% w/w gamma-Fe2O3 SM-MNP/BMI-NTf2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considerable effort has been made in recent years to optimize materials properties for magnetic hyperthermia applications. However, due to the complexity of the problem, several aspects pertaining to the combined influence of the different parameters involved still remain unclear. In this paper, we discuss in detail the role of the magnetic anisotropy on the specific absorption rate of cobalt-ferrite nanoparticles with diameters ranging from 3 to 14 nm. The structural characterization was carried out using x-ray diffraction and Rietveld analysis and all relevant magnetic parameters were extracted from vibrating sample magnetometry. Hyperthermia investigations were performed at 500 kHz with a sinusoidal magnetic field amplitude of up to 68 Oe. The specific absorption rate was investigated as a function of the coercive field, saturation magnetization, particle size, and magnetic anisotropy. The experimental results were also compared with theoretical predictions from the linear response theory and dynamic hysteresis simulations, where exceptional agreement was found in both cases. Our results show that the specific absorption rate has a narrow and pronounced maxima for intermediate anisotropy values. This not only highlights the importance of this parameter but also shows that in order to obtain optimum efficiency in hyperthermia applications, it is necessary to carefully tailor the materials properties during the synthesis process. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729271]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate if the Breast Imaging Reporting and Data System (BI-RADS) ultrasound descriptor of orientation can be used in magnetic resonance imaging (MRI). Materials and Methods: We conducted a retrospective study to evaluate breast mass lesions identified by MRI from 2008 to 2010 who had ultrasound (US) and histopathologic confirmation. Lesions were measured in the craniocaudal (CC), anteroposterior (AP), and transverse (T) axes and classified as having a nonparallel orientation, longest axis perpendicular to Cooper's ligaments, or in a parallel orientation when the longest axis is parallel to Cooper's ligaments. The MR image data were correlated with the US orientation according to BI-RADS and histopathological diagnosis. Results: We evaluated 71 lesions in 64 patients. On MRI, 27 lesions (38.0%) were nonparallel (8 benign and 19 malignant), and 44 lesions (62.0%) were parallel (33 benign and 11 malignant). There was significant agreement between the lesion orientation on US and MRI (kappa value = 0.901). The positive predictive values (PPV) for parallel orientation malignancy on MR and US imaging were 70.4% and 73.1%, respectively. Conclusion: A descriptor of orientation for breast lesions can be used on MRI with PPV for malignant lesions similar to US. J. Magn. Reson. Imaging 2012; 36:13831388. (C) 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports on the successful use of magnetic albumin nanosphere (MAN), consisting of maghemite nanoparticles hosted by albumin-based nanosphere, to target different sites within the central nervous system (CNS). Ultrastructural analysis by transmission electron microscopy (TEM) of the material collected from the mice was performed in the time window of 30 minutes up to 30 days after administration. Evidence found that the administered MAN was initially internalized and transported by erythrocytes across the blood-brain-barrier and transferred to glial cells and neuropils before internalization by neurons, mainly in the cerebellum. We hypothesize that the efficiency of MAN in crossing the BBB with no pathological alterations is due to the synergistic effect of its two main components, the iron-based nanosized particles and the hosting albumin-based nanospheres. We found that the MAN in targeting the CNS represents an important step towards the design of nanosized materials for clinical and diagnostic applications.