20 resultados para local-scale variation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquaculture of filter-feeding bivalve mollusks involves the fruitful conversion of marine particulate organic matter into premium protein of high nutritive value. Culture performance of bivalves is largely dependent on hydrological conditions and directly affected by e. g. temperature and chlorophyll levels. Accordingly, these parameters may be related with seasonality but also with oceanographic features combined with climate events. Yields of Pacific cupped oyster (Crassostrea gigas) reared at commercial procedures in suspended structures (long-lines) in a sheltered bay in Southern Brazil (Santa Catarina State, 27S 43'; 48 W 30') were evaluated in relation to local environmental conditions: sea surface temperature, chlorophyll a concentration, and associate effects of cold fronts events and El Nino and La Nina periods. Outputs from four consecutive commercial crop years were analyzed (2005/06, 2006/07, 2007/08, 2008/09) in terms of oyster survival and development time during the following grow-out phases of the culture cycle: seed to juvenile, juvenile to adult, adult to marketable. Since culture management and genetics were standardized significant differences verified among crop performance could be mostly related to environmental effects. Time series of temperature and chlorophyll a (remote sensing data) from crop periods displayed significant seasonal and interannual variation. As expected, performance during initial grow-out stages (seed to juvenile) was critical for final crop yield. Temperature was the main factor affecting survival in these initial stages with a trend of negative correlation, though not statistically significant. On the other hand, oyster development rate was significantly and positively affected by chlorophyll a concentration. Chlorophyll a values could be increased by upwelled cold nutrient-rich South Atlantic Central Water (SACW, related to predominant Northern winds) though further dependent on occurrence of Southern winds (cold fronts) to assist seawater penetration into the sheltered farming area. Lower salinity nutrient-rich northward drifted waters from La Plata River discharge may also result in chlorophyll a rise in the farming area. The El Nino period (July 2006 to February 2007) coincided with lower chlorophyll a levels in the farming site that may be related to both decreased number of cold fronts as well as predominance of Northern winds that retain northward spreading of La Plata River discharge waters. In contrast, the La Nina period (August 2007 to June 2008) corresponded to higher chlorophyll a values in the farming area by both upwelling of SACW and penetration of La Plata River discharge water assisted by increased occurrence of Southern winds and cold fronts. The recognition of the potentially changing climate and effects upon the environment will be an important step in planning future development of bivalve aquaculture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current cosmological dark sector (dark matter plus dark energy) is challenging our comprehension about the physical processes taking place in the Universe. Recently, some authors tried to falsify the basic underlying assumptions of such dark matterdark energy paradigm. In this Letter, we show that oversimplifications of the measurement process may produce false positives to any consistency test based on the globally homogeneous and isotropic ? cold dark matter (?CDM) model and its expansion history based on distance measurements. In particular, when local inhomogeneity effects due to clumped matter or voids are taken into account, an apparent violation of the basic assumptions (Copernican Principle) seems to be present. Conversely, the amplitude of the deviations also probes the degree of reliability underlying the phenomenological DyerRoeder procedure by confronting its predictions with the accuracy of the weak lensing approach. Finally, a new method is devised to reconstruct the effects of the inhomogeneities in a ?CDM model, and some suggestions of how to distinguish between clumpiness (or void) effects from different cosmologies are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous analyses of the mitochondrial gene cytochrome c oxidase subunit 1 (COI) and γ-proteobacterial endosymbiont diversity have suggested that the marine bryozoan Bugula neritina is a complex of three cryptic species, namely Types S, D and N. Types D and N were previously reported to have restricted distributions along California (western USA) and Delaware and Connecticut (eastern USA), respectively, whereas Type S is considered widespread in tropical, subtropical and temperate regions due to anthropogenic transport. Here, Bayesian species delimitation analysis of a data set composed of two mitochondrial (COI and large ribosomal RNA subunit [16S]) and two nuclear genes (dynein light chain roadblock type-2 protein [DYN] and voltage-dependent anion-selective channel protein [VDAC]) demonstrated that Types S, D and N correspond to three biological species. This finding was significantly supported, in spite of the combinations of priors applied for ancestral population size and root age. Furthermore, COI sequences were used to assess the introduction patterns of the cosmopolitan Type S species. Two COI haplotypes of Type S (S1a and S1d) were found occurring at a global scale. Mantel tests showed correlation between these haplotypes and local sea surface temperature tolerance. Accordingly, the distributions of Type S haplotypes may reflect intraspecific temperature tolerance variation, in addition to the role of introduction vectors. Finally, we show that the Type N may also have been introduced widely, as this species was found for the first time in Central California and north-eastern Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Too Big to Ignore (TBTI; www.toobigtoignore.net) is a research network and knowledge mobilization partnership established to elevate the profile of small-scale fisheries (SSF), to argue against their marginalization in national and international policies, and to develop research and governance capacity to address global fisheries challenges. Network participants and partners are conducting global and comparative analyses, as well as in-depth studies of SSF in the context of local complexity and dynamics, along with a thorough examination of governance challenges, to encourage careful consideration of this sector in local, regional and global policy arenas. Comprising 15 partners and 62 researchers from 27 countries, TBTI conducts activities in five regions of the world. In Latin America and the Caribbean (LAC) region, we are taking a participative approach to investigate and promote stewardship and self-governance in SSF, seeking best practices and success stories that could be replicated elsewhere. As well, the region will focus to promote sustainable livelihoods of coastal communities. Key activities include workshops and stakeholder meetings, facilitation of policy dialogue and networking, as well as assessing local capacity needs and training. Currently, LAC members are putting together publications that examine key issues concerning SSF in the region and best practices, with a first focus on ecosystem stewardship. Other planned deliverables include comparative analysis, a regional profile on the top research issues on SSF, and a synthesis of SSF knowledge in LAC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA) is a long term (20 years) research effort aimed at the understanding of the functioning of the Amazonian ecosystem. In particular, the strong biosphere-atmosphere interaction is a key component looking at the exchange processes between vegetation and the atmosphere, focusing on aerosol particles. Two aerosol components are the most visible: The natural biogenic emissions of aerosols and VOCs, and the biomass burning emissions. A large effort was done to characterize natural biogenic aerosols that showed detailed organic characterization and optical properties. The biomass burning component in Amazonia is important in term of aerosol and trace gases emissions, with deforestation rates decreasing, from 27,000 Km2 in 2004 to about 5,000 Km2 in 2011. Biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. Long term monitoring of aerosols and trace gases were performed in two sites: a background site in Central Amazonia, 55 Km North of Manaus (called ZF2 ecological reservation) and a monitoring station in Porto Velho, Rondonia state, a site heavily impacted by biomass burning smoke. Several instruments were operated to measured aerosol size distribution, optical properties (absorption and scattering at several wavelengths), composition of organic (OC/EC) and inorganic components among other measurements. AERONET and MODIS measurements from 5 long term sites show a large year-to year variability due to climatic and socio-economic issues. Aerosol optical depths of more than 4 at 550nm was observed frequently over biomass burning areas. In the pristine Amazonian atmosphere, aerosol scattering coefficients ranged between 1 and 200 Mm-1 at 450 nm, while absorption ranged between 1 and 20 Mm-1 at 637 nm. A strong seasonal behavior was observed, with greater aerosol loadings during the dry season (Jul-Nov) as compared to the wet season (Dec-Jun). During the wet season in Manaus, aerosol scattering (450 nm) and absorption (637 nm) coefficients averaged, respectively, 14 and 0.9 Mm-1. Angstrom exponents for scattering were lower during the wet season (1.6) in comparison to the dry season (1.9), which is consistent with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic aerosols, predominant in the coarse mode. Single scattering albedo, calculated at 637 nm, did not show a significant seasonal variation, averaging 0.86. In Porto Velho, even in the wet season it was possible to observe an impact from anthropogenic aerosol. Black Carbon was measured at a high 20 ug/m³ in the dry season, showing strong aerosol absorption. This work presents a general description of the aerosol optical properties in Amazonia, both during the Amazonian wet and dry seasons.