17 resultados para last glacial maximum


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sedimentary unconsolidated cover of the Aveiro-Espinho continental shelf and upper slope (NW Portugal) records a complex interplay of processes including wave energy and currents, fluvial input, sediment transport alongshore and cross-shelf, geological and oceanographic processes and sediment sources and sinks. In order to study this record, a set of surface sediment samples was studied. Sediment grain size and composition, as well as the mineralogical composition (by XRD) of the fine (<63 mu m) and clay (<2 mu m) fractions and benthic microfaunal (foraminifera) data were analysed. Cluster analysis applied to the sedimentological data (grain size, sediment composition and mineralogy) allowed the establishment of three main zones corresponding to the: inner-, mid- and outer-shelf/upper slope. On the inner-shelf, the sedimentary coverture is composed of siliciclastic fine to very fine sand, essentially comprising modern (immature) terrigenous particles. The sediment grain size, as well as mineralogical and microfaunal composition, denote the high energetic conditions of this sector in which the alongshore transport of sand is predominantly southward and occurs mostly during the spring-summer oceanographic regime, when the main river providing sediments to this area, the River Douro, undergoes periods of drought. This effect may emphasize the erosive character of this coastal sector at present, since the Ria de Aveiro provides the shelf with few sediments. On the mid-shelf, an alongshore siliciclastic band of coarse sand and gravel can be found between the 40 m and 60 m isobaths. This gravelly deposit includes relic sediments deposited during lower sea-level stands. This structure stays on the surface due to the high bottom energy, which promotes the remobilization of the fine-grained sediments, and/or events of sediments bypassing. Benthic foraminifera density and "Benthic Foraminifera High Productivity" (BFHP) proxy values are in general low, which is consistent with the overall small supply of organic matter to the oceanic bottom in the inner- and mid-shelf. However, the Ria de Aveiro outflow, which delivers organic matter to the shelf, leaves its imprint mainly on the mid-shelf, identifiable by the increase in foraminifera density and BFHP values in front of the lagoon mouth. The higher values of BFHP along the 100 m isobath trace the present position of an oceanic thermal front whose situation may have changed in the last 3/5 ka BP. This zone marks a clear difference in the density, diversity and composition of benthic foraminifera assemblages. Here, in addition, sediment composition changes significantly, giving rise to carbonate-rich fine to medium sand in the deeper sector. The low bottom energy and the small sedimentation rate of the outer-shelf contributed to the preservation of a discontinuous carbonate-rich gravel band, between the 100 m and 140 m isobaths, also related to paleo-littorals, following the transgression that has occurred since the Last Glacial Maximum. The winter oceanographic regime favours the transport of fine grained sediments to the outer-shelf and upper slope. The inner- and mid-shelf, however, have low amounts of this kind of sediment and the Cretacic carbonated complexes Pontal da Galega and Pontal da Cartola, rocky outcrops located at the mid- and outer-shelf, act as morphological barriers to the cross-shelf transport of sediments. Thus a reduced sedimentation rate occurs in these deeper sectors, as indicated by the lower abundance of detrital minerals, which is compensated for the high sedimentary content of biogenic carbonates. The relatively high BFHP and Shannon Index values indicate water column stratification, high supply of organic matter and environmental stability, which provide favourable conditions for a diversified benthic fauna to flourish. These conditions also encourage authigenic chemical changes, favourable to glauconite formation, as well as illite and kaolinite degradation. Benthic foraminifera and clay mineral assemblages also reveal the effect of the internal waves pushing upward, and downslope losses of the sediments on the outer-shelf and upper slope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continental margin off SE South America hosts one of the world’s most energetic hydrodynamic regimes but also the second largest drainage system of the continent. Both, the ocean current system as well as the fluvial runoff are strongly controlled by the atmospheric circulation modes over the region. The distribution pattern of particular types of sediments on shelf and slope and the long-term built-up of depositional elements within the overall margin architecture are, thus, the product of both, seasonal to millennial variability as well as long-term environmental trends. This talk presents how the combination of different methodological approaches can be used to obtain a comprehensive picture of the variability of a shelf and upper-slope hydrodynamic system during Holocene times. The particular methods applied are: (a) Margin-wide stratigraphic information to elucidate the role of sea level for the oceanographic and sedimentary systems since the last glacial maximum; (b) Palaeoceanographic sediment proxies combined with palaeo-temperature indicating isotopes of bivalve shells to trace lateral shifts in the coastal oceanography (particularly of the shelf front) during the Holocene; (c) Neodymium isotopes to identify the shelf sediment transport routes resulting from the current regime; (d) Sedimentological/geochemical data to show the efficient mechanism of sand export from the shelf to the open ocean; (e) Diatom assemblages and sediment element distributions indicating palaeo-salinity and the changing marine influence to illustrate the Plata runoff history. Sea level has not only controlled the overall configuration of the shelf but also the position of the main sediment routes from the continent towards the ocean. The shelf front has shifted frequently since the last glacial times probably resulting from both, changes in the Westerly Winds intensity and in the shelf width itself. Remarkable is a southward shift of this front during the past two centuries possibly related to anthropogenic influences on the atmosphere. The oceanographic regime with its prominent hydrographic boundaries led to a clear separation of sedimentary provinces since shelf drowning. It is especially the shelf front which enhances shelf sediment export through a continuous high sand supply to the uppermost slope. Finally, the Plata River does not continuously provide sediment to the shelf but shows significant climate-related changes in discharge during the past centuries. Starting from these findings, three major fields of research should, in general, be further developed in future: (i) The immediate interaction of the hydrodynamic and sedimentary systems to close the gaps between deposit information and modern oceanographic dynamics; (ii) Material budget calculations for the marginal ocean system in terms of material fluxes, storage/retention capacities, and critical thresholds; (iii) The role of human activity on the atmospheric, oceanographic and solid material systems to unravel natural vs. anthropogenic effects and feedback mechanisms