23 resultados para growth response
Resumo:
Trypanosoma cruzi is an organism highly resistant to ionizing radiation. Following a dose of 500 Gy of gamma radiation, the fragmented genomic DNA is gradually reconstructed and the pattern of chromosomal bands is restored in less than 48 hours. Cell growth arrests after irradiation but, while DNA is completely fragmented, RNA maintains its integrity. In this work we compared the transcriptional profiles of irradiated and non-irradiated epimastigotes at different time points after irradiation using microarray. In total, 273 genes were differentially expressed; from these, 160 were up-regulated and 113 down-regulated. We found that genes with predicted functions are the most prevalent in the down-regulated gene category. Translation and protein metabolic processes, as well as generation of precursor of metabolites and energy pathways were affected. In contrast, the up-regulated category was mainly composed of obsolete sequences (which included some genes of the kinetoplast DNA), genes coding for hypothetical proteins, and Retrotransposon Hot Spot genes. Finally, the tyrosyl-DNA phosphodiesterase 1, a gene involved in double-strand DNA break repair process, was up-regulated. Our study demonstrated the peculiar response to ionizing radiation, raising questions about how this organism changes its gene expression to manage such a harmful stress.
Resumo:
The aim of the present study was to estimate genetic parameters for flight speed and its association with growth traits in Nellore beef cattle. The flight speed (FS) of 7,402 yearling animals was measured, using a device composed of a pair of photoelectric cells. Time interval data (s) were converted to speed (m/s) and faster animals were regarded as more reactive. The growth traits analyzed were weaning weight (WW), ADG from weaning to yearling age, and yearling scrotal circumference (SC). The (co)variance components were estimated using REML in a multitrait analysis applying an animal model. The model included random direct additive genetic and residual effects, fixed effects of contemporary groups, age of dam (classes), and age of animal as covariable. For WW, the model also included maternal genetic and permanent environmental random effects. The direct heritability estimate for FS was 0.26 +/- 0.05 and direct heritability estimates for WW, SC, and ADG were 0.30 +/- 0.01, 0.48 +/- 0.02, and 0.19 +/- 0.01, respectively. Estimates of the genetic correlation between FS and the growth traits were -0.12 +/- 0.07 (WW), -0.13 +/- 0.08 (ADG), and -0.11 +/- 0.07 (SC). Although the values were low, these correlations showed that animals with better temperaments (slower FS) tended to present better performance. It is possible to infer that long-term selection for weight and scrotal circumference can promote a positive genetic response in the temperament of animals. Nevertheless, to obtain faster genetic progress in temperament, it would be necessary to perform direct selection for such trait. Flight speed is an easily measured indicator of temperament and can be included as a selection criterion in breeding programs for Nellore cattle.
Resumo:
This paper addresses the numerical solution of random crack propagation problems using the coupling boundary element method (BEM) and reliability algorithms. Crack propagation phenomenon is efficiently modelled using BEM, due to its mesh reduction features. The BEM model is based on the dual BEM formulation, in which singular and hyper-singular integral equations are adopted to construct the system of algebraic equations. Two reliability algorithms are coupled with BEM model. The first is the well known response surface method, in which local, adaptive polynomial approximations of the mechanical response are constructed in search of the design point. Different experiment designs and adaptive schemes are considered. The alternative approach direct coupling, in which the limit state function remains implicit and its gradients are calculated directly from the numerical mechanical response, is also considered. The performance of both coupling methods is compared in application to some crack propagation problems. The investigation shows that direct coupling scheme converged for all problems studied, irrespective of the problem nonlinearity. The computational cost of direct coupling has shown to be a fraction of the cost of response surface solutions, regardless of experiment design or adaptive scheme considered. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to determine the impact of three levels of [CO2] and two levels of soil-nutrient availability on the growth and physiological responses of two tropical tree species differing in their ecological group: Croton urucurana Baillon, a pioneer (P), and also Cariniana legalis (Martius) Kuntze, a late succession (LS). We aimed to test the hypothesis that P species have stronger response to elevated [CO2] than LS species as a result of differences in photosynthetic capacity and growth kinetics between both functional groups. Seedlings of both species were grown in open-top-chambers under high (HN) or low (LN) soil-nutrient supply and exposed to ambient (380 mu mol mol(-1)) or elevated (570 and 760 mu mol mol(-1)) [CO2]. Measurements of gas exchange, chlorophyll a fluorescence, seedling biomass and allocation were made after 70 days of treatment. Results suggest that elevated [CO2] significantly enhances the photosynthetic rates (A) and biomass production in the seedlings of both species, but that soil-nutrient supply has the potential to modify the response of young tropical trees to elevated [CO2]. In relation to plants grown in ambient [CO2], the P species grown under 760 mu mol mol(-1) [CO2] showed increases of 28% and 91% in A when grown in LN and HN, respectively. In P species grown under 570 mu mol mol(-1) [CO2], A increased by 16% under HN, but there was no effect in LN. In LS species, the enhancement of A by effect of 760 mu mol mol(-1) [CO2] was 30% and 70% in LN and HN, respectively. The exposure to 570 mu mol mol(-1) [CO2] stimulated A by 31% in HN, but was no effect in LN. Reductions in stomatal conductance (g(s)) and transpiration (E), as a result of elevated [CO2] were observed. Increasing the nutrient supply from low to high increased both the maximum rate of carboxylation (V-cmax) and maximum potential rate of electron transport (J(max)). As the level of [CO2] increased, both the V-cmax and the J(max) were found to decrease, whereas the J(max)/V-cmax ratio increased. In the LS species, the maximum efficiency of PSII (F-v/F-m) was higher in the 760 mu mol mol(-1) [CO2] treatment relative to other [CO2] treatments. The results suggest that when grown under HN and the highest [CO2], the performance of the P species C. urucurana, in terms of photosynthesis and biomass enhancement, is better than the LS species C. legalis. However, a larger biomass is allocated to roots when C. legalis seedlings were exposed to elevated [CO2]. This response would be an important strategy for plant survival and productivity of the LS species under drought stresses conditions on tropical environments in a global-change scenario. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background In the alpha subclass of proteobacteria iron homeostasis is controlled by diverse iron responsive regulators. Caulobacter crescentus, an important freshwater α-proteobacterium, uses the ferric uptake repressor (Fur) for such purpose. However, the impact of the iron availability on the C. crescentus transcriptome and an overall perspective of the regulatory networks involved remain unknown. Results In this work we report the identification of iron-responsive and Fur-regulated genes in C. crescentus using microarray-based global transcriptional analyses. We identified 42 genes that were strongly upregulated both by mutation of fur and by iron limitation condition. Among them, there are genes involved in iron uptake (four TonB-dependent receptor gene clusters, and feoAB), riboflavin biosynthesis and genes encoding hypothetical proteins. Most of these genes are associated with predicted Fur binding sites, implicating them as direct targets of Fur-mediated repression. These data were validated by β-galactosidase and EMSA assays for two operons encoding putative transporters. The role of Fur as a positive regulator is also evident, given that 27 genes were downregulated both by mutation of fur and under low-iron condition. As expected, this group includes many genes involved in energy metabolism, mostly iron-using enzymes. Surprisingly, included in this group are also TonB-dependent receptors genes and the genes fixK, fixT and ftrB encoding an oxygen signaling network required for growth during hypoxia. Bioinformatics analyses suggest that positive regulation by Fur is mainly indirect. In addition to the Fur modulon, iron limitation altered expression of 113 more genes, including induction of genes involved in Fe-S cluster assembly, oxidative stress and heat shock response, as well as repression of genes implicated in amino acid metabolism, chemotaxis and motility. Conclusions Using a global transcriptional approach, we determined the C. crescentus iron stimulon. Many but not all of iron responsive genes were directly or indirectly controlled by Fur. The iron limitation stimulon overlaps with other regulatory systems, such as the RpoH and FixK regulons. Altogether, our results showed that adaptation of C. crescentus to iron limitation not only involves increasing the transcription of iron-acquisition systems and decreasing the production of iron-using proteins, but also includes novel genes and regulatory mechanisms.
Resumo:
The efficacy of estrus synchronization using short-term protocol was evaluated by ultrasound exams in Suffolk ewes during the pre-breeding season. The control Group (n = 12) was synchronized by treatment for 12 days with vaginal sponges impregnated with medroxyprogesterone acetate, and 400 IU eCG at sponge withdrawal. Experimental groups I, II and III kept the sponge in place for 4 days, and 100 µg of PGF2a was administered at sponge withdrawal. Additionally, Group I (n = 12) had 0.1 mg of estradiol benzoate (EB) administered during sponge placement and 50 µg of GnRH 48 hours after sponge removal. Group II (n = 6) had 35 mg of progesterone (P4) injected, and 0.1 mg of EB administered during sponge placement, 400 IU eCG at withdrawal and 48 hours after, 50 µg GnRH were administrated. Group III (n = 12) had 35 mg of P4 and 0.2 mg of EB administered at sponge placement, 400 IU eCG at withdrawal, and 50 µg of GnRH was administrated after 56 hours. Ovaries were monitored through ultrasound scanning. Concerning the first wave, no difference was detected between the control group and the experimental groups. However, the characteristics of ovulatory wave were significantly different between the groups. The duration of the follicular wave was shorter for Group III than for Group II. The follicle in Group I reached its maximum diameter before the Group II. The diameter of the follicle at the sponge withdrawal in the control group was larger than in Group I. After sponge withdrawal, the follicular growth rate was smaller in the control group than in Group III. The maximum diameter of the follicle in Group II was larger than in the other groups. The short-term protocol in which estrogen was used did not synchronize the emergence of the wave of follicular development.
Resumo:
Background and Objective: Periodontopathogens experience several challenges in the oral cavity that may influence their transcription profile and resulting phenotype. This study evaluated the effect of environmental changes on phenotype and gene expression in a serotype b Aggregatibacter actinomycetemcomitans isolate. Material and Methods: Cultures in early exponential phase and at the start of stationary growth phase in microaerophilic and anaerobic atmospheres were evaluated. Cell hydrophobic properties were measured by adherence to n-hexadecane; in addition, adhesion to, and the ability to invade, KB cells was evaluated. Relative transcription of 12 virulence-associated genes was determined by real-time reverse transcritption quantitative PCR. Results: The culture conditions tested in this study were found to influence the phenotypic and genotypic traits of A. actinomycetemcomitans. Cells cultured in microaerophilic conditions were the most hydrophobic, reached the highest adhesion efficiency and showed up-regulation of omp100 (which encodes an adhesion) and pga (related to polysaccharide synthesis). Cells grown anaerobically were more invasive to epithelial cells and showed up-regulation of genes involved in host-cell invasion or apoptosis induction (such as apaH, omp29, cagE and cdtB) and in adhesion to extracellular matrix protein (emaA). Conclusion: Environmental conditions of different oral habitats may influence the expression of factors involved in the binding of A. actinomycetemcomitans to host tissues and the damage resulting thereby, and thus should be considered in in-vitro studies assessing its pathogenic potential.
Resumo:
BACKGROUND: In the alpha subclass of proteobacteria iron homeostasis is controlled by diverse iron responsive regulators. Caulobacter crescentus, an important freshwater α-proteobacterium, uses the ferric uptake repressor (Fur) for such purpose. However, the impact of the iron availability on the C. crescentus transcriptome and an overall perspective of the regulatory networks involved remain unknown. RESULTS: In this work we report the identification of iron-responsive and Fur-regulated genes in C. crescentus using microarray-based global transcriptional analyses. We identified 42 genes that were strongly upregulated both by mutation of fur and by iron limitation condition. Among them, there are genes involved in iron uptake (four TonB-dependent receptor gene clusters, and feoAB), riboflavin biosynthesis and genes encoding hypothetical proteins. Most of these genes are associated with predicted Fur binding sites, implicating them as direct targets of Fur-mediated repression. These data were validated by β-galactosidase and EMSA assays for two operons encoding putative transporters. The role of Fur as a positive regulator is also evident, given that 27 genes were downregulated both by mutation of fur and under low-iron condition. As expected, this group includes many genes involved in energy metabolism, mostly iron-using enzymes. Surprisingly, included in this group are also TonB-dependent receptors genes and the genes fixK, fixT and ftrB encoding an oxygen signaling network required for growth during hypoxia. Bioinformatics analyses suggest that positive regulation by Fur is mainly indirect. In addition to the Fur modulon, iron limitation altered expression of 113 more genes, including induction of genes involved in Fe-S cluster assembly, oxidative stress and heat shock response, as well as repression of genes implicated in amino acid metabolism, chemotaxis and motility. CONCLUSIONS: Using a global transcriptional approach, we determined the C. crescentus iron stimulon. Many but not all of iron responsive genes were directly or indirectly controlled by Fur. The iron limitation stimulon overlaps with other regulatory systems, such as the RpoH and FixK regulons. Altogether, our results showed that adaptation of C. crescentus to iron limitation not only involves increasing the transcription of iron-acquisition systems and decreasing the production of iron-using proteins, but also includes novel genes and regulatory mechanisms