23 resultados para gas production technique


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aims Endophytic and rhizospheric environments differ in many respects, leading to the presence of different bacterial communities at each site. However, microorganisms such as enterobacteria can be found both within plants and in the surrounding soil. Bacteria must present differences in the traits that affect such environments in order to successfully colonise them. The present study compared the plant growth-promoting potential of diazotrophic enterobacteria isolated from the rhizosphere and from within surface-disinfected plants. Methods A total of 46 diazotrophic enterobacterial strains (21 rhizospheric and 25 putatively endophytic) belonging to the Klebsiella and Enterobacter genera, which are prevalent in sugar cane plantations, were isolated from the rhizosphere and from surface-disinfected plants. Their ability to synthesise amino acids using combined nitrogen obtained from nitrogen fixation, and their ability to synthesise indole-3-acetic acid (IAA) were determined by high performance liquid chromatography. Endogenous ethylene production by the bacteria was measured using gas chromatography, and biocontrol of phytopathogenic fungi was determined qualitatively using a dual culture technique. Results The putative endophytes released significantly higher amounts of amino acids than the rhizospheric bacteria, whilst the latter produced higher quantities of ethylene and were more actively antagonistic to fungi. Both types of bacteria released similar amounts of IAA. Conclusion Endophytic and rhizospheric bacteria differ in their capacity to release plant growth-promoting substances, which may be a reflection of their adaptations and an indication of their potential impact on their natural environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative study using different proportions of CeO2/C (4%, 9% and 13% CeO2) was performed to produce H2O2, a reagent used in the oxidation of organic pollutants and in electro-Fenton reactions for the production of the hydroxyl radical (OH center dot), a strong oxidant agent used in the electrochemical treatment of aqueous wastewater. The CeO2/C materials were prepared by a modified polymeric precursor method (PPM). X-ray diffraction analysis of the CeO2/C prepared by the PPM identified two phases. CeO2 and CeO2. The average size of the crystallites in these materials was close to 7 nm. The kinetics of the oxygen reduction reaction (ORR) were evaluated by the rotating ring-disk electrode technique. The results showed that the 4% CeO2/C prepared by the PPM was the best composite for the production of H2O2 in a 1 mol L-1 NaOH electrolyte solution. For this material, the number of electrons transferred and the H2O2 percentage efficiency were 3.1 and 44%, respectively. The ring-current of the 4% CeO2/C was higher than that of Vulcan carbon, the reference material for H2O2 production, which produced 41% H2O2 and transferred 3.1 electrons per molecule of oxygen. The overpotential for this reaction on the ceria-based catalyst was substantially lower (approximately 200 mV), demonstrating the higher catalytic performance of this material. Gas diffusion electrodes (GDE) containing the catalyst were used to evaluate the real amount of H2O2 produced during exhaustive electrolysis. The 4% CeO2/C GDE produced 871 mg L-1 of H2O2, whereas the Vulcan carbon GDE produced a maximum amount of only 407 mg L-1. Thus, the 4% CeO2/C electrocatalyst prepared by the PPM is a promising material for H2O2 electrogeneration in alkaline media. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modifications in low-density lipoprotein (LDL) have emerged as a major pathogenic factor of atherosclerosis, which is the main cause of morbidity and mortality in the western world. Measurements of the heat diffusivity of human LDL solutions in their native and in vitro oxidized states are presented by using the Z-Scan (ZS) technique. Other complementary techniques were used to obtain the physical parameters necessary to interpret the optical results, e. g., pycnometry, refractometry, calorimetry, and spectrophotometry, and to understand the oxidation phase of LDL particles. To determine the sample's thermal diffusivity using the thermal lens model, an iterative one-parameter fitting method is proposed which takes into account several characteristic ZS time-dependent and the position-dependent transmittance measurements. Results show that the thermal diffusivity increases as a function of the LDL oxidation degree, which can be explained by the increase of the hydroperoxides production due to the oxidation process. The oxidation products go from one LDL to another, disseminating the oxidation process and caring the heat across the sample. This phenomenon leads to a quick thermal homogenization of the sample, avoiding the formation of the thermal lens in highly oxidized LDL solutions. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.10.105003]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oil industry uses gas separators in production wells as the free gas present in the suction of the pump reduces the pumping efficiency and pump lifetime. Therefore, free gas is one of the most important variables in the design of pumping systems. However, in the literature there is little information on these separators. It is the case of the inverted-shroud gravitational gas separator. It has an annular geometry due to the installation of a cylindrical container in between the well casing and pioduction pipe (tubing). The purpose of the present study is to understand the phenomenology and behavior of inverted-shroud separator. Experimental tests were performed in a 10.5-m-length inclinable glass tube with air and water as working fluids. The water flow rate was in the range of 8.265-26.117 l/min and the average inlet air mass flow rate was 1.1041 kg/h, with inclination angles of 15 degrees, 30 degrees, 45 degrees, 60 degrees, 75 degrees, 80 degrees and 85 degrees. One of the findings is that the length between the inner annular level and production pipe inlet is one of the most important design parameters and based on that a new criterion for total gas separation is proposed. We also found that the phenomenology of the studied separator is not directly dependent on the gas flow rate, but on the average velocity of the free surface flow generated inside the separator. Maps of efficiency of gas separation were plotted and showed that liquid flow rate, inclination angle and pressure difference between casing and production pipe outlet are the main variables related to the gas separation phenomenon. The new data can be used for the development of design tools aiming to the optimized project of the pumping system for oil production in directional wells. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The aim of this study was to compare the production of the chemokines CCL3 and CXCL12 by cultured dental pulp fibroblasts from permanent (PDPF) and deciduous (DDPF) teeth under stimulation by Porphyromonas gingivalis LPS (PgLPS). Material and Methods: Primary culture of fibroblasts from permanent (n=3) and deciduous (n=2) teeth were established using an explant technique. After the fourth passage, fibroblasts were stimulated by increasing concentrations of PgLPS (0 – 10 µg/mL) at 1, 6 and 24 h. The cells were tested for viability through MTT assay, and production of the chemokines CCL3 and CXCL12 was determined through ELISA. Comparisons among samples were performed using One-way ANOVA for MTT assay and Two-way ANOVA for ELISA results. Results: Cell viability was not affected by the antigen after 24 h of stimulation. PgLPS induced the production of CCL3 by dental pulp fibroblasts at similar levels for both permanent and deciduous pulp fibroblasts. Production of CXCL12, however, was significantly higher for PDPF than DDPF at 1 and 6 h. PgLPS, in turn, downregulated the production of CXCL12 by PDPF but not by DDPF. Conclusion: These data suggest that dental pulp fibroblasts from permanent and deciduous teeth may present a differential behavior under PgLPS stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background The PEEP-ZEEP technique is previously described as a lung inflation through a positive pressure enhancement at the end of expiration (PEEP), followed by rapid lung deflation with an abrupt reduction in the PEEP to 0 cmH2O (ZEEP), associated to a manual bilateral thoracic compression. Aim To analyze PEEP-ZEEP technique's repercussions on the cardio-respiratory system in immediate postoperative artery graft bypass patients. Methods 15 patients submitted to a coronary artery bypass graft surgery (CABG) were enrolled prospectively, before, 10 minutes and 30 minutes after the technique. Patients were curarized, intubated, and mechanically ventilated. To perform PEEP-ZEEP technique, saline solution was instilled into their orotracheal tube than the patient was reconnected to the ventilator. Afterwards, the PEEP was increased to 15 cmH2O throughout 5 ventilatory cycles and than the PEEP was rapidly reduced to 0 cmH2O along with manual bilateral thoracic compression. At the end of the procedure, tracheal suction was accomplished. Results The inspiratory peak and plateau pressures increased during the procedure (p < 0.001) compared with other pressures during the assessment periods; however, they were within lung safe limits. The expiratory flow before the procedure were 33 ± 7.87 L/min, increasing significantly during the procedure to 60 ± 6.54 L/min (p < 0.001), diminishing to 35 ± 8.17 L/min at 10 minutes and to 36 ± 8.48 L/min at 30 minutes. Hemodynamic and oxygenation variables were not altered. Conclusion The PEEP-ZEEP technique seems to be safe, without alterations on hemodynamic variables, produces elevated expiratory flow and seems to be an alternative technique for the removal of bronchial secretions in patients submitted to a CABG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lipase produced by a newly isolate Sporidiobolus pararoseus strain has potential catalysis ability for esterification reactions. In order to improve its synthetic activity, this work aimed at optimizing 'synthetic lipase' production by submerged fermentation of a conventional media based on peptone, yeast extract, NaCl and olive oil using experimental design technique. According to the results obtained in the first experimental design (2(4-1)), yeast extract and NaCl concentrations were tested to further optimization by response surface methodology. The maximum 'synthetic lipase' activity obtained was 26.9 U/mL in the optimized media (5.0, 6.8, 7.0 and 1.0% (wt/v) of peptone, yeast extract, NaCl and olive oil, respectively), representing a 6.36-fold increase compared to the initial medium. The time course of 'synthetic lipase' production in the optimized condition was evaluated in terms of synthetic activity, protease activity, biomass and total carbon and the maximum synthetic activity was observed during the stationary phase of growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four crossbred geldings were used in a randomized blocks experimental design. The objective was to study the use of the internal markers indigestible cellulose (iCEL) and indigestible lignin (iLIG), obtained in situ (cattle) or in vivo (equine) to predict nutrient apparent digestibility in horses. Treatments consisted of different methodologies to determine digestibility: direct method with total feces collection (TC), and indirect method using internal markers iCEL and iLIG obtained either by in situ incubation in bovine rumen or in vivo (IV) using the mobile nylon bag (MNB) technique in horses. Feces production was 2.80 kg in DM, and average recovery rate (p > 0.05) was 101%. Nutrient digestibility coefficient (p > 0.05) estimates were adequately predicted by iCEL and iLIG, obtained in situ or in vivo, with average values of 52.63, 54.17, 64.90, 43.73 and 98.28% for dry matter, organic matter, crude protein, neutral detergent fiber and starch, respectively. It can be concluded that iCEL and iLIG may be obtained in vivo by MNB in horses consuming a forage-concentrate diet, to predict nutrient digestibility coefficients.