20 resultados para games-based training
Resumo:
PURPOSE: To evaluate the effect of inspiratory muscle training (IMT) on cardiac autonomic modulation and on peripheral nerve sympathetic activity in patients with chronic heart failure (CHF). METHODS: Functional capacity, low-frequency (LF) and high-frequency (HF) components of heart rate variability, muscle sympathetic nerve activity inferred by microneurography, and quality of life were determined in 27 patients with CHF who had been sequentially allocated to 1 of 2 groups: (1) control group (with no intervention) and (2) IMT group. Inspiratory muscle training consisted of respiratory exercises, with inspiratory threshold loading of seven 30-minute sessions per week for a period of 12 weeks, with a monthly increase of 30% in maximal inspiratory pressure (PImax) at rest. Multivariate analysis was applied to detect differences between baseline and followup period. RESULTS: Inspiratory muscle training significantly increased PImax (59.2 +/- 4.9 vs 87.5 +/- 6.5 cmH(2)O, P = .001) and peak oxygen uptake (14.4 +/- 0.7 vs 18.9 +/- 0.8 mL.kg(-1).min(-1), P = .002); decreased the peak ventilation (V. E) +/- carbon dioxide production (V-CO2) ratio (35.8 +/- 0.8 vs 32.5 +/- 0.4, P = .001) and the (V) over dotE +/-(V) over dotCO(2) slope (37.3 +/- 1.1 vs 31.3 +/- 1.1, P = .004); increased the HF component (49.3 +/- 4.1 vs 58.4 +/- 4.2 normalized units, P = .004) and decreased the LF component (50.7 +/- 4.1 vs 41.6 +/- 4.2 normalized units, P = .001) of heart rate variability; decreased muscle sympathetic nerve activity (37.1 +/- 3 vs 29.5 +/- 2.3 bursts per minute, P = .001); and improved quality of life. No significant changes were observed in the control group. CONCLUSION: Home-based IMT represents an important strategy to improve cardiac and peripheral autonomic controls, functional capacity, and quality of life in patients with CHF.
Resumo:
Purpose. To use a randomized design to evaluate the effectiveness of voice training programs for telemarketers via multidimensional analysis. Methods. Forty-eight telemarketers were randomly assigned to two groups: voice training group (n = 14) who underwent training over an 8-week period and a nontraining control group (n = 34). Before and after training, recordings of the sustained vowel /epsilon/ and connected were collected for acoustic and perceptual analyses. Results. Based on pre- and posttraining comparisons, the voice training group presented with a significant reduction in percent jitter (P = 0.044). No other significant differences were observed, and inter-rater reliability varied from poor to fair. Conclusions. These findings suggest that voice training improved a single acoustic dimension, but do not change perceptual dimension of telemarketers' voices.
Resumo:
ABSTRACT: Purpose: To describe a research-based global curriculum in speech-language pathology and audiology that is part of a funded cross-linguistic consortium among 2 U.S. and 2 Brazilian universities. Method: The need for a global curriculum in speechlanguage pathology and audiology is outlined, and different funding sources are identified to support development of a global curriculum. The U.S. Department of Education’s Fund for the Improvement of Post-Secondary Education (FIPSE), in conjunction with the Brazilian Ministry of Education (Fundacao Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior; CAPES), funded the establishment of a shared research curriculum project, “Consortium for Promoting Cross-Linguistic Understanding of Communication Disabilities in Children” for East Tennessee State University and the University of Northern Iowa and 2 Brazilian universities (Universidade Federal de Santa Maria and Universidade de São Paulo-Baurú). Results: The goals and objectives of the research-based global curriculum are summarized, and a description of an Internet-based course, “Different Languages, One World,” is provided Conclusion: Partnerships such as the FIPSE–CAPES consortium provide a foundation for training future generations of globally and research-prepared practitioners in speechlanguage pathology and audiology.
Resumo:
Abstract Background Educational computer games are examples of computer-assisted learning objects, representing an educational strategy of growing interest. Given the changes in the digital world over the last decades, students of the current generation expect technology to be used in advancing their learning requiring a need to change traditional passive learning methodologies to an active multisensory experimental learning methodology. The objective of this study was to compare a computer game-based learning method with a traditional learning method, regarding learning gains and knowledge retention, as means of teaching head and neck Anatomy and Physiology to Speech-Language and Hearing pathology undergraduate students. Methods Students were randomized to participate to one of the learning methods and the data analyst was blinded to which method of learning the students had received. Students’ prior knowledge (i.e. before undergoing the learning method), short-term knowledge retention and long-term knowledge retention (i.e. six months after undergoing the learning method) were assessed with a multiple choice questionnaire. Students’ performance was compared considering the three moments of assessment for both for the mean total score and for separated mean scores for Anatomy questions and for Physiology questions. Results Students that received the game-based method performed better in the pos-test assessment only when considering the Anatomy questions section. Students that received the traditional lecture performed better in both post-test and long-term post-test when considering the Anatomy and Physiology questions. Conclusions The game-based learning method is comparable to the traditional learning method in general and in short-term gains, while the traditional lecture still seems to be more effective to improve students’ short and long-term knowledge retention.
Resumo:
Semi-supervised learning is a classification paradigm in which just a few labeled instances are available for the training process. To overcome this small amount of initial label information, the information provided by the unlabeled instances is also considered. In this paper, we propose a nature-inspired semi-supervised learning technique based on attraction forces. Instances are represented as points in a k-dimensional space, and the movement of data points is modeled as a dynamical system. As the system runs, data items with the same label cooperate with each other, and data items with different labels compete among them to attract unlabeled points by applying a specific force function. In this way, all unlabeled data items can be classified when the system reaches its stable state. Stability analysis for the proposed dynamical system is performed and some heuristics are proposed for parameter setting. Simulation results show that the proposed technique achieves good classification results on artificial data sets and is comparable to well-known semi-supervised techniques using benchmark data sets.