51 resultados para endothelium
Resumo:
Aims: Inflammation may have an important role in the beginning and in the progress of cardiovascular diseases. Testosterone exerts important effects on vascular function, which is altered in arterial hypertension. Thus, the aim of this study was to evaluate the influence of endogenous testosterone on leukocyte behavior in post-capillary venules of the mesenteric bed of spontaneously hypertensive rats (SHR). Main methods: 18 week-old intact SHR, castrated SHR and normotensive rats (intact Wistar) were used. Blood pressure was measured by tail plethysmography and serum testosterone levels by ELISA. Leukocyte rolling, adhesion and migration were evaluated in vivo in situ by intravital microscopy. Key findings: Castration significantly reduced blood pressure and reversed the increased leukocyte rolling and adhesion observed in SHRs. Leukocyte counts and other hemodynamic parameters did not differ among groups. SHRs displayed increased protein expression of P-selectin and ICAM-1 in mesenteric venules when compared to intact Wistar. Castration of SHRs restored the protein expression of the cell adhesion molecules. Significance: The findings of the present study demonstrate the critical role of endogenous testosterone mediating the effects of hypertension increasing leukocyte-endothelial cell interaction. Increased expression of cell adhesion molecules contribute to the effects of endogenous testosterone promoting increased leukocyte rolling and adhesion in SHRs. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin-angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective ATI receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P) H oxidase-mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT(1)-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Vascular pathology, including blood-brain/spinal cord barrier (BBB/BSCB) alterations, has recently been recognized as a key factor possibly aggravating motor neuron damage, identifying a neurovascular disease signature for ALS. However, BBB/BSCB competence in sporadic ALS (SALS) is still undetermined. In this study, BBB/BSCB integrity in postmortem gray and white matter of medulla and spinal cord tissue from SALS patients and controls was investigated. Major findings include (1) endothelial cell damage and pericyte degeneration, (2) severe intra- and extracellular edema, (3) reduced CD31 and CD105 expressions in endothelium, (4) significant accumulation of perivascular collagen IV, and fibrin deposits (5) significantly increased microvascular density in lumbar spinal cord, (6) IgG microvascular leakage, (7) reduced tight junction and adhesion protein expressions. Microvascular barrier abnormalities determined in gray and white matter of the medulla, cervical, and lumbar spinal cord of SALS patients are novel findings. Pervasive barrier damage discovered in ALS may have implications for disease pathogenesis and progression, as well as for uncovering novel therapeutic targets. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Sex differences in Ca2+-dependent signalling and homoeostasis in the vasculature of hypertensive rats are well characterized. However, sex-related differences in SOCE (store-operated Ca2+ entry) have been minimally investigated. We hypothesized that vascular protection in females, compared with males, reflects decreased Ca2+ mobilization due to diminished activation of Orai 1/STIM 1 (stromal interaction molecule I). In addition, we investigated whether ovariectomy in females affects the activation of the Orai 1/STIM 1 pathway. Endothelium-denuded aortic rings from male and female SHRSP (stroke-prone spontaneously hypertensive rats) and WKY (Wistar Kyoto) rats and from OVX (ovariectomized) or sham female SHRSP and WKY rats were used to functionally evaluate Ca2+ influx-induced contractions. Compared with females, aorta from male SHRSP displayed: (i) increased contraction during the Ca2+-loading period; (ii) similar transient contraction during Ca2+ release from the intracellular stores; (iii) increased activation of STIM 1 and Orai1, as shown by the blockade of STIM 1 and Orai1 with neutralizing antibodies, which reversed the sex differences in contraction during the Ca2+-loading period; and (iv) increased expression of STIM I and Orai I. Additionally, we found that aortas from OVX-SHRSP showed increased contraction during the Ca2+-loading period and increased Orai1 expression, but no changes in the SR (sarcoplasmic reticulum)-buffering capacity or STIM I expression. These findings suggest that augmented activation of STIM 1/Orai 1 in aortas from male SHRSP represents a mechanism that contributes to sex-related impaired control of intracellular Ca2+ levels. Furthermore, female sex hormones may negatively modulate the STIM/Orai 1 pathway, contributing to vascular protection observed in female rats.
Resumo:
The objective of this study was to observe possible interactions between the renin-angiotensin and nitrergic systems in chronic hypoxia-induced pulmonary hypertension in newborn piglets. Thirteen chronically instrumented newborn piglets (6.3 +/- 0.9 days; 2369 +/- 491 g) were randomly assigned to receive saline (placebo, P) or the AT(1) receptor (AT(1)-R) blocker L-158,809 (L) during 6 days of hypoxia (FiO(2) = 0.12). During hypoxia, pulmonary arterial pressure (Ppa; P < 0.0001), pulmonary vascular resistance (PVR; P < 0.02) and the pulmonary to systemic vascular resistance ratio (PVR/SVR; P < 0.05) were significantly attenuated in the L (N = 7) group compared to the P group (N = 6). Western blot analysis of lung proteins showed a significant decrease of endothelial NOS (eNOS) in both P and L animals, and of AT(1)-R in P animals during hypoxia compared to normoxic animals (C group, N = 5; P < 0.01 for all groups). AT(1)-R tended to decrease in L animals. Inducible NOS (iNOS) did not differ among P, L, and C animals and iNOS immunohistochemical staining in macrophages was significantly more intense in L than in P animals (P < 0.01). The vascular endothelium showed moderate or strong eNOS and AT(1)-R staining. Macrophages and pneumocytes showed moderate or strong iNOS and AT(1)-R staining, but C animals showed weak iNOS and AT(1)-R staining. Macrophages of L and P animals showed moderate and weak AT(2)-R staining, respectively, but the endothelium of all groups only showed weak staining. In conclusion, pulmonary hypertension induced by chronic hypoxia in newborn piglets is partially attenuated by AT(1)-R blockade. We suggest that AT(1)-R blockade might act through AT(2)-R and/or Mas receptors and the nitrergic system in the lungs of hypoxemic newborn piglets.
Resumo:
In this study, we demonstrated the importance of telomerase protein expression and determined the relationships among telomerase, endothelin-1 (ET-1) and myofibroblasts during early and late remodeling of parenchymal and vascular areas in usual interstitial pneumonia (UIP) using 27 surgical lung biopsies from patients with idiopathic pulmonary fibrosis (IPF). Telomerase+, myofibroblasts alpha-SMA+, smooth muscle cells caldesmon+, endothelium ET-1+ cellularity, and fibrosis severity were evaluated in 30 fields covering normal lung parenchyma, minimal fibrosis (fibroblastic foci), severe ( mural) fibrosis, and vascular areas of UIP by the point-counting technique and a semiquantitative score. The impact of these markers was determined in pulmonary functional tests and follow-up until death from IPF. Telomerase and ET-1 expression was significantly increased in normal and vascular areas compared to areas of fibroblast foci. Telomerase and ET-1 expression was inversely correlated with minimal fibrosis in areas of fibroblast foci and directly associated with severe fibrosis in vascular areas. Telomerase activity in minimal fibrosis areas was directly associated with diffusing capacity of the lung for oxygen/alveolar volume and ET-1 expression and indirectly associated with diffusing capacity of the lungs for carbon monoxide and severe fibrosis in vascular areas. Cox proportional hazards regression revealed a low risk of death for females with minimal fibrosis displaying high telomerase and ET-1 expression in normal areas. Vascular dysfunction by telomerase/ET-1 expression was found earlier than vascular remodeling by myofibroblast activation in UIP with impact on IPF evolution, suggesting that strategies aimed at preventing the effect of these mediators may have a greater impact on patient outcome.
Resumo:
Aims: Adrenomedullin (AM) is a peptide that displays cardiovascular protective activity. We investigated the effects of chronic ethanol consumption on arterial blood pressure, vascular reactivity to AM and the expression of AM system components in the rat mesenteric arterial bed (MAB). Methods: Male Wistar rats were treated with ethanol (20% vol/vol) for 6 weeks. Systolic, diastolic and mean arterial blood pressure were monitored in conscious rats. Vascular reactivity experiments were performed on isolated rat MAB. Matrix metalloproteinase-2 (MMP-2) levels were determined by gelatin zymography. Nitrite and nitrate generation were measured by chemiluminescence. Protein and mRNA levels of pre-pro-AM, CRLR (calcitonin receptor-like receptor) and RAMP1, 2 and 3 (receptor activity-modifying proteins) were assessed by western blot and quantitative real-time polymerase chain reaction, respectively. Results: Ethanol consumption induced hypertension and decreased the relaxation induced by AM and acetylcholine in endothelium-intact rat MAB. Phenylephrine-induced contraction was increased in endothelium-intact MAB from ethanol-treated rats. Ethanol consumption did not alter basal levels of nitrate and nitrite, nor did it affect the expression of MMP-2 or the net MMP activity in the rat MAB. Ethanol consumption increased mRNA levels of pre-pro-AM and protein levels of AM in the rat MAB. Finally, no differences in protein levels or mRNA of CRLR and RAMP1, 2 and 3 were observed after treatment with ethanol. Conclusion: Our study demonstrates that ethanol consumption increases blood pressure and the expression of AM in the vasculature and reduces the relaxation induced by this peptide in the rat MAB.
Resumo:
Nitric oxide (NO) has been pointed out as being the main mediator involved in the hypotension and tissue injury taking place during sepsis. This study aimed to investigate the cellular mechanisms implicated in the acetylcholine (ACh)-induced relaxation detected in aortic rings isolated from rats submitted to cecal ligation and perforation (CLP group), 6 h post-CLP. The mean arterial pressure was recorded, and the concentration-effect curves for ACh were constructed for endothelium-intact aortic rings in the absence (control) or after incubation with one of the following NO synthase inhibitors: L-NAME (non-selective), L-NNA (more selective for eNOS), 7-nitroindazole (more selective for nNOS), or 1400W (selective for iNOS). The NO concentration was determined by using confocal microscopy. The protein expression of the NOS isoforms was quantified by Western blot analysis. The prostacyclin concentration was indirectly analyzed on the basis of 6-keto-prostaglandin F-1 alpha (6-keto-PGF(1 alpha)) levels measured by enzyme immunoassay. There were no differences between Sham- and CLP-operated rats in terms of the relaxation induced by acetylcholine. However, the NOS inhibitors reduced this relaxation in both groups, but this effect remained more pronounced in the CLP group as compared to the Sham group. The acetylcholine-induced NO production was higher in the rat aortic endothelial cells of the CLP group than in those of the Sham group. eNOS protein expression was larger in the CLP group, but the iNOS protein was not verified in any of the groups. The basal 6-keto-PGF(1 alpha) levels were higher in the CLP group, but the acetylcholine-stimulated levels did not increase in CLP as much as they did in the Sham group. Taken together, our results show that the augmented NO production in sepsis syndrome elicited by cecal ligation and perforation is due to eNOS up-regulation and not to iNOS. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In this study, we investigated the effect of the ruthenium complex [Ru(terpy)(bdq)NO+](3+) (TERPY) on the arterial pressure from renal hypertensive 2 kidney-1 clip (2K-1C) rats, which was compared with sodium nitroprusside (SNP). The most interesting finding was that the intravenous bolus injection of TERPY (2.5, 5.0, 7 mg/kg) had a dose-dependent hypotensive effect only in 2K-1C rats. On the other hand, SNP (35 and 70 mu g/kg) presented a similar hypotensive effect in both normotensive (2K) and 2K-1C although the effect of 70 mu g/kg was >35 mu g/kg. The injection of the nonselective NO-synthase inhibitor N-omega-nitro-L-arginine methyl ester (L-NAME) increased the arterial pressure in 2K and 2K-1C rats with a similar magnitude. After infusion of L-NAME, the hypotensive effect induced by TERPY and SNP was potentiated in both 2K and in 2K-1C rats. The administration of the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl increased the hypotensive effect induced by TERPY or SNP in both 2K and 2K-1C rats. The hypotensive effect induced by TERPY was longer than that produced by SNP. Taken together, our results show that the TERPY has a long-lasting hypotensive effect, which has a dose dependence and higher magnitude in 2K-1C compared with in 2K rats. In comparison with SNP, TERPY is less potent in inducing arterial pressure fall, but it presents a much longer hypotensive effect.
Resumo:
Vascular dysfunction associated with two-kidney, one-clip (2K-1C) hypertension may result from both altered matrix metalloproteinase (MMP) activity and higher concentrations of reactive oxygen species (ROS). Doxycycline is considering the most potent MMP inhibitor of tetracyclines and attenuates 2K-1C hypertension-induced high blood pressure and chronic vascular remodeling. Doxycycline might also act as a ROS scavenger and this may contribute to the amelioration of some cardiovascular diseases associated with increased concentrations of ROS. We hypothesized that in addition to its MMP inhibitory effect, doxycycline attenuates oxidative stress and improves nitric oxide (NO) bioavailability in 2K-1C hypertension, thus improving hypertension-induced arterial endothelial dysfunction. Sham operated or 2K-1C hypertensive rats were treated with doxycycline 30 mg/kg/day (or vehicle). After 8 weeks of treatment, aortic rings were isolated to assess endothelium dependent vasorelaxation to A23187. Arterial and systemic levels of ROS were respectively measured using dihydroethidine (DHE) and thiobarbituric acid reactive substances (TBARS). Neutrophils-derived ROS were tested in vitro using the fluoroprobe Carboxy-H(2)DCFDA and human neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA). NO levels were assessed in rat aortic endothelial cells by confocal microscopy. Aortic MMP activity was determined by in situ zymography. Doxycycline attenuated 2K-1C hypertension (169 +/- 17.3 versus 209 +/- 10.9 mm Hg in hypertensive controls, p < 0.05) and protected against hypertension-induced reduction in endothelium-dependent vasorelaxation to A23187 (p < 0.05). Doxycycline also decreased hypertension-induced oxidative stress (p <= 0.05), higher MMP activity (p < 0.01) and improved NO levels in aortic endothelial cells (p < 0.01). Therefore, doxycycline ameliorates 2K-1C hypertension-induced endothelial dysfunction in aortas by inhibiting oxidative stress generation and improving NO bioavailability, in addition to its inhibitory effects on MMP activity. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We investigated the role of reactive oxygen species (ROS) and nitric oxide (NO) in ethanol-induced relaxation. Vascular reactivity experiments showed that ethanol (0.03-200 mmol/L) induced relaxation in endothelium-intact and denuded rat aortic rings isolated from male Wistar rats. Pre-incubation of intact or denuded rings with L-NAME (non selective NOS inhibitor, 100 mu mol/L), 7-nitroindazole (selective nNOS inhibitor, 100 mu mol/L), ODQ (selective inhibitor of guanylyl cyclase enzyme, I mu mol/L), glibenclamide (selective blocker of ATP-sensitive K+ channels, 3 mu mol/L) and 4-aminopyridine (selective blocker of voltage-dependent K+ channels, 4-AP, 1 mmol/L) reduced ethanol-induced relaxation. Similarly, tiron (superoxide anion (O-2(-)) scavenger, 1 mmol/L) and catalase (hydrogen peroxide (H2O2) scavenger, 300 U/mL) reduced ethanol-induced relaxation to a similar extent in both endothelium-intact and denuded rings. Finally, prodifen (non-selective cytochrome P450 enzymes inhibitor, 10 mu mol/L) and 4-methylpyrazole (selective alcohol dehydrogenase inhibitor, 10 mu mol/L) reduced ethanol-induced relaxation. In cultured aortic vascular smooth muscle cells (VSMCs), ethanol stimulated generation of NO, which was significantly inhibited by L-NAME. In endothelial cells, flow cytometry studies showed that ethanol increased cytosolic Ca2+ concentration ([Ca2+]c), O-2(-) and cytosolic NO concentration ([NO]c). Tiron inhibited ethanol-induced increase in [Ca-2]c and [NO]c. The major new finding of this work is that ethanol induces relaxation via redox-sensitive and NO-cGMP-dependent pathways through direct effects on ROS production and NO signaling. These findings identify putative molecular mechanisms whereby ethanol, at pharmacological concentrations, influences vascular reactivity. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Background: Placental characters vary among Xenarthra, one of four supraordinal clades of Eutheria. Armadillos are known for villous, haemochorial placentas similar to humans. Only the nine-banded armadillo has been well studied so far. Methods: Placentas of three species of armadillos were investigated by means of histology, immunohistochemistry including proliferation marker, and transmission and scanning electron microscopy. Results: The gross anatomy differed: Euphractus sexcinctus and Chaetophractus villosus had extended, zonary placentas, whereas Chaetophractus vellerosus had a disk. All taxa had complex villous areas within the maternal blood sinuses of the endometrium. Immunohistochemistry indicated the validity of former interpretations that the endothelium of the sinuses was largely intact. Tips of the villi and the columns entering the maternal tissue possessed trophoblast cell clusters with proliferation activity. Elsewhere, the feto-maternal barrier was syncytial haemochorial with fetal vessels near the surface. Conclusions: Differences among armadillos occurred in regard to the extension of the placenta, whereas the fine structure was similar. Parallels to the human suggest that armadillos are likely to be useful animal models for human placentation.
Resumo:
Nitric oxide (NO)-donors are pharmacologically active substances that in vivo or in vitro release NO. Their most common side effect is headache caused by cerebral vasodilatation. We previously demonstrated that the new NO-donor Ru(terpy)(bdq)NO](3+) (Terpy), synthesized in our laboratory, induces relaxation of rat aorta. This study aimed to verify the effect of Terpy and sodium nitroprusside (SNP) in basilar artery. We conducted vascular reactivity experiments on endothelium-denuded basilar rings. The concentrations of iron (Fe) and ruthenium (Ru) complex were analyzed in basilar artery lysates after incubation with NO donors by mass spectrometry. We also evaluated the NO released from SNP and Terpy by using confocal microscopy. Interestingly, Terpy did not induce relaxation of the basilar artery. SNP induced relaxation in a concentration-dependent way. NO donors cross the membrane of vascular smooth muscle and entered the cell. In spite of its permeability, Terpy did not release NO in the basilar artery. Otherwise, SNP released NO in the basilar artery cells cytoplasm. Taken together, our results demonstrate that the new NO donor (Terpy) failed to release NO and to induce relaxation in the basilar artery. The NO donor SNP induces vascular relaxation due to NO release in the vascular smooth muscle cells. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background/Aims: beta(2)-adrenoceptor (beta(2)-AR) activation induces smooth muscle relaxation and endothelium-derived nitric oxide (NO) release. However, whether endogenous basal beta(2)-AR activity controls vascular redox status and NO bioavailability is unclear. Thus, we aimed to evaluate vascular reactivity in mice lacking functional beta(2)-AR (beta 2KO), focusing on the role of NO and superoxide anion. Methods and Results: Isolated thoracic aortas from beta 2KO and wild-type mice (WT) were studied. beta 2KO aortas exhibited an enhanced contractile response to phenylephrine compared to WT. Endothelial removal and L-NAME incubation increased phenylephrine-induced contraction, abolishing the differences between beta 2KO and WT mice. Basal NO availability was reduced in aortas from beta 2KO mice. Incubation of beta 2KO aortas with superoxide dismutase or NADPH inhibitor apocynin restored the enhanced contractile response to phenylephrine to WT levels. beta 2KO aortas exhibited oxidative stress detected by enhanced dihydroethidium fluorescence, which was normalized by apocynin. Protein expression of eNOS was reduced, while p47(phox) expression was enhanced in beta 2KO aortas. Conclusions: The present results demonstrate for the first time that enhanced NADPH-derived superoxide anion production is associated with reduced NO bioavailability in aortas of beta 2KO mice. This study extends the knowledge of the relevance of the endogenous activity of beta(2)-AR to the maintenance of the vascular physiology. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
A decrease in the number of cardiovascular events in patients with rheumatoid arthritis or psoriasis treated with methotrexate (MTX) has been observed in the literature. The aim of this study was to test whether MTX could promote anti-inflammatory effects and reduce the atherosclerotic lesions in rabbits with atherosclerosis induced by cholesterol feeding. Twenty male New Zealand rabbits were fed a 1% cholesterol diet for 60 days. Starting from day 30 of cholesterol feeding, 10 animals were treated with 4 weekly intravenous injections of MTX (4 mg/kg) and 10 with 4 weekly saline solution injections for 30 days. MTX reduced the size of the lesion areas of cholesterol-fed animals by 75% and intima-media ratio 2- fold. The drug inhibited macrophage migration into the intima by 50% and the presence of apoptotic cells by 84% but did not inhibit the intimal proliferation of smooth muscle cells. MTX treatment also diminished the positive staining area of metalloproteinase 9 in the intima, which is probably beneficial. In the tumor necrosis factor-alpha-treated human umbilical vein endothelial cell line, incubation with MTX led to downregulation of 5 pro-inflammatory genes, TNF-alpha, VAP-1, IL-1 beta, CXCL2, and TLR2, and upregulation of the antiinflammatory TGF-beta 1 gene, thus showing endothelium-protective properties. In conclusion, MTX showed direct in vivo anti-atherosclerotic action and may have potential in the treatment of this disorder.