18 resultados para diphase anaerobic digestion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to evaluate, in Nellore heifers, intake and digestibility of hydrolyzed sugarcane stored for different periods. The experimental design used was a 4 × 4 Latin square, four diets, four Nellore heifers with ruminal cannulas (initial body weight 285.4±23.08 kg and average initial age 14 months) and four periods of 21 days. The diets were composed by fresh sugarcane (time zero) or hydrolyzed sugarcane with addition of 0.5% of hydrated lime, stored for 24, 48 or 72 hours, as the unique forage. Intake and digestibility of feed fractions, nitrogen balance, microbial synthesis efficiency, total number of ruminal protozoans and ammoniacal nitrogen did not significantly change by storing sugarcane with addition of 0.5% of hydrated lime. Sugarcane pH varied quadratically for storage time, with maximum pH of 7.02 after 24 hours from lime addition. Ruminal liquid pH values were higher for heifers fed fresh sugarcane, in comparison with those fed hydrolyzed sugarcane. Sugarcane treated with 0.5% of hydrated lime stored for up to 72 hours does not change ruminal digestion to alter the amount of feed consumed by pubescent Nellore heifers. Thus, lime is a viable technology, once it allows long-duration storage and bee control on treated forage, which contributes to animal feeding logistics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of an anaerobic sequencing-batch biofilm reactor (ASBBR- laboratory scale- 14L )containing biomass immobilized on coal was evaluated for the removal of elevated concentrations of sulfate (between 200 and 3,000 mg SO4-2·L-1) from industrial wastewater effluents. The ASBBR was shown to be efficient for removal of organic material (between 90% and 45%) and sulfate (between 95% and 85%). The microbiota adhering to the support medium was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). The ARDRA profiles for the Bacteria and Archaea domains proved to be sensitive for the determination of microbial diversity and were consistent with the physical-chemical monitoring analysis of the reactor. At 3,000 mg SO4-2·L-1, there was a reduction in the microbial diversity of both domains and also in the removal efficiencies of organic material and sulfate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to identify groups of microorganisms that are capable of degrading organic matter utilizing sulfate as an electron acceptor. The assay applied for this purpose consisted of running batch reactors and monitoring lactate consumption, sulfate reduction and sulfide production. A portion of the lactate added to the batch reactors was consumed, and the remainder was converted into acetic, propionic and butyric acid after 111 hours of operation These results indicate the presence of sulfate-reducing bacteria (SRB) catalyzing both complete and incomplete oxidation of organic substrates. The sulfate removal efficiency was 49.5% after 1335 hours of operation under an initial sulfate concentration of 1123 mg/L. The SRB concentrations determined by the most probable number (MPN) method were 9.0x10(7) cells/mL at the beginning of the assay and 8.0x10(5) cells/mL after 738 hours of operation.