30 resultados para death dying and bereavement


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study documents one of the slowest feeding behaviors ever recorded for a muricid gastropod in one of the most biotically rigorous regions on the planet. In Pacific Panama, Vitularia salebrosa attacks mollusks by drilling through their shells. The duration of attacks estimated by isotope sclerochronology of oyster shells collected during attacks in progress range from 90 to 230 days, while experimental observation of interactions documented one attack greater than 103 days. The prolonged nature of attacks suggests that V. salebrosa is best characterized as an ectoparasite than as a predator, which is the ancestral condition in the Muricidae. An ectoparasitic lifestyle is also evident in the unusual interaction traces of this species, which include foot scars, feeding tunnels and feeding tubes, specialized soft anatomy, and in the formation of male-female Pairs, which is consistent with protandrous hermaphroditism, as is typical in sedentary gastropods. To delay death of its host, V. salebrosa targets renewable resources when feeding, such as blood and digestive glands. A congener, Vitularia miliaris from the Indo-Pacific, has an identical feeding biology The origin and persistence of extremely slow feeding in the tropics challenges our present understanding of selective pressures influencing the evolution of muricid feeding behaviors and morphological adaptations. Previously, it has been suggested that faster feeding is advantageous because it permits predators to spend a greater proportion of time hiding in enemy-free refugia or to take additional prey, the energetic benefits of which could be translated into increased fecundity or defenses. The benefits of exceptionally slow feeding have received little consideration. In the microhabitat preferred by V. salebrosa (beneath boulders), it is possible that prolonged interactions with hosts decrease vulnerability to enemies by reducing the frequency of risky foraging events between feedings . Ectoparasitic feeding through tunnels by V. salebrosa may also reduce competitive interactions with kleptoparasites (e.g., crabs, snails) that steal food through the gaped valves of dead or dying hosts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previously, we reported that nucleophosmin (NPM) was increased in glioblastoma multiforme (GBM). NPM is a phosphoprotein related to apoptosis, ribosome biogenesis, mitosis, and DNA repair, but details about its function remain unclear. We treated U87MG and A172 cells with small interference RNA (siRNA) and obtained a reduction of 80% in NPM1 expression. Knockdown at the protein level was evident after the 4th day and was maintained until the 7th day of transfection that was investigated by quantitative proteomic analysis using isobaric tags. The comparison of proteomic analysis of NPM1-siRNA against controls allowed the identification of 14 proteins, two proteins showed increase and 12 presented a reduction of expression levels. Gene ontology assigned most of the hypoexpressed proteins to apoptosis regulation, including GRP78. NPM1 silencing did not impair cell proliferation until the 7th day after transfection, but sensitized U87MG cells to temozolomide (TMZ), culminating with an increase in cell death and provoking at a later period a reduction of colony formation. In a large data set of GBM patients, both GRP78 and NPM1 genes were upregulated and presented a tendency to shorter overall survival time. In conclusion, NPM proved to participate in the apoptotic process, sensitizing TMZ-treated U87MG and A172 cells to cell death, and in association with upregulation of GRP78 may be helpful as a predictive factor of poor prognosis in GBM patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of meso-substituted tetra-cationic porphyrins, which have methyl and octyl substituents, was studied in order to understand the effect of zinc chelation and photosensitizer subcellular localization in the mechanism of cell death. Zinc chelation does not change the photophysical properties of the photosensitizers (all molecules studied are type II photosensitizers) but affects considerably the interaction of the porphyrins with membranes, reducing mitochondrial accumulation. The total amount of intracellular reactive species induced by treating cells with photosensitizer and light is similar for zinc-chelated and free-base porphyrins that have the same alkyl substituent. Zinc-chelated porphyrins, which are poorly accumulated in mitochondria, show higher efficiency of cell death with features of apoptosis (higher MTT response compared with trypan blue staining, specific acridine orange/ethidium bromide staining, loss of mitochondrial transmembrane potential, stronger cytochrome c release and larger sub-G1 cell population), whereas nonchelated porphyrins, which are considerably more concentrated in mitochondria, triggered mainly necrotic cell death. We hypothesized that zinc-chelation protects the photoinduced properties of the porphyrins in the mitochondrial environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Induction of apoptotic cell death in response to chemotherapy and other external stimuli has proved extremely difficult in melanoma, leading to tumor progression, metastasis formation and resistance to therapy. A promising approach for cancer chemotherapy is the inhibition of proteasomal activity, as the half-life of the majority of cellular proteins is under proteasomal control and inhibitors have been shown to induce cell death programs in a wide variety of tumor cell types. 4-Nerolidylcatechol (4-NC) is a potent antioxidant whose cytotoxic potential has already been demonstrated in melanoma tumor cell lines. Furthermore, 4-NC was able to induce the accumulation of ubiquitinated proteins, including classic targets of this process such as Mcl-1. As shown for other proteasomal inhibitors in melanoma, the cytotoxic action of 4-NC is time-dependent upon the pro-apoptotic protein Noxa, which is able to bind and neutralize Mcl-1. We demonstrate the role of 4-NC as a potent inducer of ROS and p53. The use of an artificial skin model containing melanoma also provided evidence that 4-NC prevented melanoma proliferation in a 3D model that more closely resembles normal human skin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chagas' disease is a protozoosis caused by Trypanosoma cruzi that frequently shows severe chronic clinical complications of the heart or digestive system. Neurological disorders due to T. cruzi infection are also described in children and immunosuppressed hosts. We have previously reported that IL-12p40 knockout (KO) mice infected with the T. cruzi strain Sylvio X10/4 develop spinal cord neurodegenerative disease. Here, we further characterized neuropathology, parasite burden and inflammatory component associated to the fatal neurological disorder occurring in this mouse model. Forelimb paralysis in infected IL-12p40KO mice was associated with 60% (p<0.05) decrease in spinal cord neuronal density, glutamate accumulation (153%, p<0.05) and strong demyelization in lesion areas, mostly in those showing heavy protein nitrosylation, all denoting a neurotoxic degenerative profile. Quantification of T. cruzi 18S rRNA showed that parasite burden was controlled in the spinal cord of WT mice, decreasing from the fifth week after infection, but progressive parasite dissemination was observed in IL-12p40KO cords concurrent with significant accumulation of the astrocytic marker GFAP (317.0%, p<0.01) and 8-fold increase in macrophages/microglia (p<0.01), 36.3% (p<0.01) of which were infected. Similarly, mRNA levels for CD3, TNF-alpha, IFN-gamma, iNOS, IL-10 and arginase I declined in WT spinal cords about the fourth or fifth week after infection, but kept increasing in IL-12p40KO mice. Interestingly, compared to WT tissue, lower mRNA levels for IFN-gamma were observed in the IL-12p40KO spinal cords up to the fourth week of infection. Together the data suggest that impairments of parasite clearance mechanisms in IL-12p40KO mice elicit prolonged spinal cord inflammation that in turn leads to irreversible neurodegenerative lesions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phoneutria nigriventer spider bite causes priapism, an effect attributed to the peptide toxins Tx2-5 and Tx2-6 and involving nitric oxide. Tx2-6 (MW = 5287) is known to delay the inactivation of Sodium channels in the same fashion as many other venom toxins. In the present study we evaluated the i.p. dose that induces priapism and the other symptoms in mice. Animals killed by the toxin or crude venom (0.85 mg/kg) were autopsied and a pathological study of brain, lung, kidney, liver and heart was undertaken using standard techniques. The same protocol was employed with animals injected with crude venom. Results showed that priapism is the first sign of intoxication, followed by piloerection, abundant salivation and tremors. An i.p. injection of about 0.3 mu g/kg induced only priapism with minimal side-effects. The most remarkable histological finding was a general vascular congestion in all organs studied. Penis showed no necrosis or damage. Lungs showed vascular congestion and alveolar hemorrhage. Heart showed also sub-endothelial hemorrhage. Brain showed only a mild edema and vascular congestion. Results obtained with crude venom closely resemble those of purified toxin. We conclude that Tx2-6 have profound effects on the vascular bed especially in lungs and heart, which may be the cause of death. Interestingly brain tissue was less affected and the observed edema may be attributed to respiratory impairment. To the best of our knowledge this is the first histopathological investigation on this toxin and venom suggesting a possible cause of death. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: To evaluate histopathological alterations triggered by brain death and associated trauma on different solid organs in rats. METHODS: Male Wistar rats (n=37) were anesthetized with isoflurane, intubated and mechanically ventilated. A trepanation was performed and a balloon catheter inserted into intracraninal cavity and rapidly inflated with saline to induce brain death. After induction, rats were monitored for 30, 180, and 360 min for hemodynamic parameters and exsanguinated from abdominal aorta. Heart, lung, liver, and kidney were removed and fixed in paraffin to evaluation of histological alterations (H&E). Sham-operated rats were trepanned only and used as control group. RESULTS: Brain dead rats showed a hemodynamic instability with hypertensive episode in the first minute after the induction followed by hypotension for approximately 1 h. Histological analyses showed that brain death induces vascular congestion in heart (p<0.05), and lung (p<0.05); lung alveolar edema (p=0.001), kidney tubular edema (p<0.05); and leukocyte infiltration in liver (p<0.05). CONCLUSIONS: Brain death induces hemodynamic instability associated with vascular changes in solid organs and compromises most severely the lungs. However, brain death associated trauma triggers important pathophysiological alterations in these organs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

SET protein (I2PP2A) is an inhibitor of PP2A, which regulates the phosphorylated Akt (protein kinase B) levels. We assessed the effects of SET overexpression in HEK293T cells, both in the presence and the absence of mild oxidative stress induced by 50 mu M tert-butyl hydroperoxide. Immunoblotting assays demonstrated that SET accumulated in HEK293T cells and increased the levels of phosphorylated Akt and PTEN; in addition, SET decreased glutathione antioxidant defense of cell and increased expression of genes encoding antioxidant defense proteins. Immunofluorescence analysis demonstrated that accumulated SET was equally distributed in cytoplasm and nucleus; however, in cells that had been exposed to oxidative stress, SET was found in large aggregates in the cytoplasm. SET accumulation in HEK293T cells correlated with inhibition of basal apoptosis as evidenced by a decrease in annexin V staining and activity of caspases; under mild oxidative stress, SET accumulation correlated with caspase-independent cell death, as evidenced by increased PI and annexin V/PI double staining. The results suggest that accumulated SET could act via Akt/PTEN either as cell survival signal or as oxidative stress sensor for cell death.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective. To analyze survival, prognostic factors, and causes of death in a large cohort of patients with systemic sclerosis (SSc). Methods. From 1991 to 2010, 947 patients with SSc were treated at 2 referral university centers in Brazil. Causes of death were considered SSc-related and non-SSc-related. Multiple logistic regression analysis was used to identify prognostic factors. Survival at 5 and 10 years was estimated using the Kaplan-Meier method. Results. One hundred sixty-eight patients died during the followup. Among the 110 deaths considered related to SSc, there was predominance of lung (48.1%) and heart (24.5%) involvement. Most of the 58 deaths not related to SSc were caused by infection, cardiovascular or cerebrovascular disease, and cancer. Male sex, modified Rodnan skin score (mRSS) > 20, osteoarticular involvement, lung involvement, and renal crisis were the main prognostic factors associated to death. Overall survival rate was 90% for 5 years and 84% for 10 years. Patients presented worse prognosis if they had diffuse SSc (85% vs 92% at 5 yrs, respectively, and 77% vs 87% at 10 yrs, compared to limited SSc), male sex (77% vs 90% at 5 yrs and 64% vs 86% at 10 yrs, compared to female sex), and mRSS > 20 (83% vs 90% at 5 yrs and 66% vs 86% at 10 yrs, compared to mRSS <20). Conclusion. Survival was worse in male patients with diffuse SSc, and lung and heart involvement represented the main causes of death in this South American series of patients with SSc. (First Release Aug 15 2012; J Rheumatol 2012;39:1971-8; doi:10.3899/jrheum.111582)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aimed at enumerating molds (heat-labile and heat-resistant) on the surface of paperboard material to be filled with tomato pulps through an aseptic system and at determining the most heat-and hydrogen peroxide-resistant strains. A total of 118 samples of laminated paperboard before filling were collected, being 68 before and 50 after the hydrogen peroxide bath. Seven molds, including heat-resistant strains (Penicillium variotii and Talaromyces flavus) with counts ranging between 0.71 and 1.02 CFU/cm(2) were isolated. P. variotii was more resistant to hydrogen peroxide than T. flavus and was inactivated after heating at 85 degrees C/15 min. When exposed to 35 % hydrogen peroxide at 25 degrees C, T. flavus (F5E2) and N. fischeri (control) were less resistant than P. variotti (F1A1). P. citrinum (F7E2) was shown to be as resistant as P. variotti. The D values (the time to cause one logarithmic cycle reduction in a microbial population at a determined temperature) for spores of P. variotii (F1A1) and N. fischeri (control) with 4 months of age at 85 and 90 degrees C were 3.9 and 4.5 min, respectively. Although the contamination of packages was low, the presence of heat-and chemical-resistant molds may be of concern for package sterility and product stability during shelf-life. To our knowledge, this is the first report that focuses on the isolation of molds, including heat-resistant ones, contaminating paperboard packaging material and on estimating their resistance to the chemical and physical processes used for packaging sterilization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: Experimental findings support clinical evidence that brain death impairs the viability of organs for transplantation, triggering hemodynamic, hormonal, and inflammatory responses. However, several of these events could be consequences of brain death-associated trauma. This study investigated microcirculatory alterations and systemic inflammatory markers in brain-dead rats and the influence of the associated trauma. METHOD: Brain death was induced using intracranial balloon inflation; sham-operated rats were trepanned only. After 30 or 180 min, the mesenteric microcirculation was observed using intravital microscopy. The expression of P-selectin and ICAM-1 on the endothelium was evaluated using immunohistochemistry. The serum cytokine, chemokine, and corticosterone levels were quantified using enzyme-linked immunosorbent assays. White blood cell counts were also determined. RESULTS: Brain death resulted in a decrease in the mesenteric perfusion to 30%, a 2.6-fold increase in the expression of ICAM-1 and leukocyte migration at the mesentery, a 70% reduction in the serum corticosterone level and pronounced leukopenia. Similar increases in the cytokine and chemokine levels were seen in the both the experimental and control animals. CONCLUSION: The data presented in this study suggest that brain death itself induces hypoperfusion in the mesenteric microcirculation that is associated with a pronounced reduction in the endogenous corticosterone level, thereby leading to increased local inflammation and organ dysfunction. These events are paradoxically associated with induced leukopenia after brain damage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Parenteral lipid emulsions (LEs) can influence leukocyte functions. The authors investigated the effect of 2 LEs on leukocyte death in surgical patients with gastrointestinal cancer. Material and Methods: Twenty-five patients from a randomized, double-blind clinical trial (ID: NCT01218841) were randomly included to evaluate leukocyte death after 3 days of preoperative infusion (0.2 g fat/kg/d) of an LE composed equally of medium/long-chain triglycerides and soybean oil (MCTs/LCTs) or pure fish oil (FO). Blood samples were collected before (t0) and after LE infusion (t1) and on the third postoperative day (t2). Results: After LE infusion (t1 vs t0), MCTs/LCTs did not influence cell death; FO slightly increased the proportion of necrotic lymphocytes (5%). At the postoperative period (t2 vs t0), MCTs/LCTs tripled the proportion of apoptotic lymphocytes; FO maintained the slightly increased proportion of necrotic lymphocytes (7%) and reduced the percentage of apoptotic lymphocytes by 74%. In the postoperative period, MCT/LCT emulsion increased the proportion of apoptotic neutrophils, and FO emulsion did not change any parameter of apoptosis in the neutrophil population. There were no differences in lymphocyte or neutrophil death when MCT/LCT and FO treatments were compared during either preoperative or postoperative periods. MCT/LCTs altered the expression of 12 of 108 genes related to cell death, with both pro- and antiapoptotic effects; FO modulated the expression of 7 genes, demonstrating an antiapoptotic effect. Conclusion: In patients with gastrointestinal cancer, preoperative MCT/LCT infusion was associated with postoperative lymphocyte and neutrophil apoptosis. FO has a protective effect on postoperative lymphocyte apoptosis. (JPEN J Parenter Enteral Nutr. 2012; 36: 677-684)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The activation of the transient receptor potential vanilloid type 1 channel (TRPV1) has been correlated with oxidative and nitrosative stress and cell death in the nervous system. Our previous results indicate that TRPV1 activation in the adult retina can lead to constitutive and inducible nitric oxide synthase-dependent protein nitration and apoptosis. In this report, we have investigated the potential effects of TRPV1 channel activation on nitric oxide synthase (NOS) expression and function, and the putative participation of ionotropic glutamate receptors in retinal TRPV1-induced protein nitration, lipid peroxidation, and DNA fragmentation. Intravitreal injections of the classical TRPV1 agonist capsaicin up-regulated the protein expression of the inducible and endothelial NOS isoforms. Using 4,5-diaminofluorescein diacetate for nitric oxide (NO) imaging, we found that capsaicin also increased the production of NO in retinal blood vessels. Processes and perikarya of TRPV1-expressing neurons in the inner nuclear layer of the retina were found in the vicinity of nNOS-positive neurons, but those two proteins did not colocalize. Retinal explants exposed to capsaicin presented high protein nitration, lipid peroxidation, and cell death, which were observed in the inner nuclear and plexiform layers and in ganglion cells. This effect was partially blocked by AP-5, a NMDA glutamate receptor antagonist, but not by CNQX, an AMPA/kainate receptor antagonist. These data support a potential role for TRPV1 channels in physiopathological retinal processes mediated by NO, which at least in part involve glutamate release.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DNA damage induced by ultraviolet (UV) radiation can be removed by nucleotide excision repair through two sub-pathways, one general (GGR) and the other specific for transcribed DNA (TCR), and the processing of unrepaired lesions trigger signals that may lead to cell death. These signals involve the tumor suppressor p53 protein, a central regulator of cell responses to DNA damage, and the E3 ubiquitin ligase Mdm2, that forms a feedback regulatory loop with p53. The involvement of cell cycle and transcription on the signaling to apoptosis was investigated in UVB-irradiated synchronized, DNA repair proficient, CS-B (TCR-deficient) and XP-C (GGR-deficient) primary human fibroblasts. Cells were irradiated in the G1 phase of the cell cycle, with two doses with equivalent levels of apoptosis (low and high), defined for each cell line. In the three cell lines, the low doses of UVB caused only a transient delay in progression to the S phase, whereas the high doses induced permanent cell cycle arrest. However, while accumulation of Mdm2 correlated well with the recovery from transcription inhibition at the low doses for normal and CS-B fibroblasts, for XP-C cells this protein was shown to be accumulated even at UVB doses that induced high levels of apoptosis. Thus, UVB-induced accumulation of Mdm2 is critical for counteracting p53 activation and apoptosis avoidance, but its effect is limited due to transcription inhibition. However, in the case of XP-C cells, an excess of unrepaired DNA damage would be sufficient to block S phase progression, which would signal to apoptosis, independent of Mdm2 accumulation. The data clearly discriminate DNA damage signals that lead to cell death, depending on the presence of UVB-induced DNA damage in replicating or transcribing regions.