19 resultados para cellular nucleic acid-binding protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical beta-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with KD (equilibrium dissociation constant) values of 2,099.93 +/- 871.03 nM and 1,239.23 +/- 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a KD of 368.63 +/- 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MicroRNAs (miRNA) are small non-coding RNAs involved in post-transcriptional gene regulation that have crucial roles in several types of tumors, including papillary thyroid carcinoma (PTC). miR-146b-5p is overexpressed in PTCs and is regarded as a relevant diagnostic marker for this type of cancer. A computational search revealed that miR-146b-5p putatively binds to the 3' untranslated region (UTR) of SMAD4, an important member of the transforming growth factor beta (TGF-beta) signaling pathway. The TGF-beta pathway is a negative regulator of thyroid follicular cell growth, and the mechanism by which thyroid cancer cells evade its inhibitory signal remains unclear. We questioned whether the modulation of the TGF-beta pathway by miR-146b-5p can contribute to thyroid tumorigenesis. Luciferase reporter assay confirmed the direct binding of miR-146b-5p on the SMAD4 3'UTR. Specific inhibition of miR-146b-5p with a locked nucleic acid-modified anti-miR-146b oligonucleotide significantly increased SMAD4 levels in the human papillary carcinoma cell lines, TPC-1 and BCPAP. Moreover, suppression of miR-146b-5p increased the cellular response to the TGF-beta anti-proliferative signal, significantly decreasing the proliferation rate. The overexpression of miR-146b-5p in normal rat follicular PCCL3 cells decreased SMAD4 levels and disrupted TGF-beta signal transduction. MiR-146b-5p overexpression in PCCL3 cells also significantly increased cell proliferation in the absence of thyroid-stimulating hormone and conferred resistance to TGF-beta-mediated cell-cycle arrest. Additionally, the activation of thyroid most common oncogenes RET/PTC3 and BRAF in PCCL3 cells upregulated miR-146b-5p expression. Our results confirm the oncogenic role of miR-146b-5p in thyroid follicular cells and contribute to knowledge regarding the modulation of TGF-beta signal transduction by miRNAs in PTCs. Oncogene (2012) 31, 1910-1922; doi:10.1038/onc.2011.381; published online 29 August 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nicotinamide adenine dinucleotide (NAD) is a ubiquitous cofactor participating in numerous redox reactions. It is also a substrate for regulatory modifications of proteins and nucleic acids via the addition of ADP-ribose moieties or removal of acyl groups by transfer to ADP-ribose. In this study, we use in-depth sequence, structure and genomic context analysis to uncover new enzymes and substrate-binding proteins in NAD-utilizing metabolic and macromolecular modification systems. We predict that Escherichia coli YbiA and related families of domains from diverse bacteria, eukaryotes, large DNA viruses and single strand RNA viruses are previously unrecognized components of NAD-utilizing pathways that probably operate on ADP-ribose derivatives. Using contextual analysis we show that some of these proteins potentially act in RNA repair, where NAD is used to remove 2'-3' cyclic phosphodiester linkages. Likewise, we predict that another family of YbiA-related enzymes is likely to comprise a novel NAD-dependent ADP-ribosylation system for proteins, in conjunction with a previously unrecognized ADP-ribosyltransferase. A similar ADP-ribosyltransferase is also coupled with MACRO or ADP-ribosylglycohydrolase domain proteins in other related systems, suggesting that all these novel systems are likely to comprise pairs of ADP-ribosylation and ribosylglycohydrolase enzymes analogous to the DraG-DraT system, and a novel group of bacterial polymorphic toxins. We present evidence that some of these coupled ADP-ribosyltransferases/ribosylglycohydrolases are likely to regulate certain restriction modification enzymes in bacteria. The ADP-ribosyltransferases found in these, the bacterial polymorphic toxin and host-directed toxin systems of bacteria such as Waddlia also throw light on the evolution of this fold and the origin of eukaryotic polyADP-ribosyltransferases and NEURL4-like ARTs, which might be involved in centrosomal assembly. We also infer a novel biosynthetic pathway that might be involved in the synthesis of a nicotinate-derived compound in conjunction with an asparagine synthetase and AMPylating peptide ligase. We use the data derived from this analysis to understand the origin and early evolutionary trajectories of key NAD-utilizing enzymes and present targets for future biochemical investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hek-293 cell line presents good production platform for recombinant therapeutic proteins, however little is known about the components that contribute to the cellular control of recombinant protein production. In this study, we generated a Hek-293 producing recombinant factor VIII (FVIII) and we evaluated the immunoglobulin-binding protein (BiP) and phytanoil-CoA α-hydroxylase (PAHX) expression levels which are known for diminishing FVIII production. Our analyses showed that the recombinant cell population expresses 3.1 ± 1.4 fold of BIP mRNA (P = 0.0054) and 97.8 ± 0.5 fold of PAHX mRNA (P = 0.0016) compared to nontransduced cells. The amount of these proteins was inversely correlated to the secreted FVIII. In conclusion, BIP and PAHX expression are augmented in human cells producing FVIII and they antagonize the amount of therapeutic factor VIII in the cell culture.