17 resultados para Zooplankton spatial distribution patterns


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time required to regrowth a forest in degraded areas depends on how the forest is removed and on the type of land use following removal. Natural regeneration was studied in abandoned old fields after intensive agricultural land use in areas originally covered by Brazilian Atlantic Forests of the Anchieta Island, Brazil in order to understand how plant communities reassemble following human disturbances as well as to determine suitable strategies of forest restoration. The fields were classified into three vegetation types according to the dominant plant species in: 1) Miconia albicans (Sw.) Triana (Melastomataceae) fields, 2) Dicranopteris flexuosa (Schrader) Underw. (Gleicheniaceae) thickets, and 3) Gleichenella pectinata (Willd.) Ching. (Gleicheniaceae) thickets. Both composition and structure of natural regeneration were compared among the three dominant vegetation types by establishing randomly three plots of 1 x 3 m in five sites of the island. A gradient in composition and abundance of species in natural regeneration could be observed along vegetation types from Dicranopteris fern thickets to Miconia fields. The gradient did not accurately follow the pattern of spatial distribution of the three dominant vegetation types in the island regarding their proximity of the remnant forests. A complex association of biotic and abiotic factors seems to be affecting the seedling recruitment and establishment in the study plots. The lowest plant regeneration found in Dicranopteris and Gleichenella thickets suggests that the ferns inhibit the recruitment of woody and herbaceous species. Otherwise, we could not distinguish different patterns of tree regeneration among the three vegetation types. Our results showed that forest recovery following severe anthropogenic disturbances is not direct, predictable or even achievable on its own. Appropriated actions and methods such as fern removal, planting ground covers, and enrichment planting with tree species were suggested in order to restore the natural forest regeneration process in the abandoned old fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correlation of soil fertility x seed physiological potential is very important in the area of seed technology but results published with that theme are contradictory. For this reason, this study to evaluate the correlations between soil chemical properties and physiological potential of soybean seeds. On georeferenced points, both soil and seeds were sampled for analysis of soil fertility and seed physiological potential. Data were assessed by the following analyses: descriptive statistics; Pearson's linear correlation; and geostatistics. The adjusted parameters of the semivariograms were used to produce maps of spatial distribution for each variable. Organic matter content, Mn and Cu showed significant effects on seed germination. Most variables studied presented moderate to high spatial dependence. Germination and accelerated aging of seeds, and P, Ca, Mg, Mn, Cu and Zn showed a better fit to spherical semivariogram: organic matter, pH and K had a better fit to Gaussian model; and V% and Fe showed a better fit to the linear model. The values for range of spatial dependence varied from 89.9 m for P until 651.4 m for Fe. These values should be considered when new samples are collected for assessing soil fertility in this production area.