18 resultados para Years of potential life lost
Resumo:
Fluoridation of the public water supplies is recognized as among the top ten public health achievements of the twentieth century. However, the positive aspects of this measure depend on the maintenance of fluoride concentrations within adequate levels. To report the results of seven years of external control of the fluoride (F) concentrations in the public water supply in Bauru, SP, Brazil in an attempt to verify, on the basis of risk/benefit balance, whether the levels are appropriate. From March 2004 to February 2011, 60 samples were collected every month from the 19 supply sectors of the city, totaling 4,641 samples. F concentrations in water samples were determined in duplicate, using an ion-specific electrode (Orion 9609) coupled to a potentiometer after buffering with TISAB II. After the analysis, the samples were classified according to the best risk-benefit adjustment. Means (±standard deviation) of F concentrations ranged between 0.73±0.06 and 0.81±0.10 mg/L for the different sectors during the seven years. The individual values ranged between 0.03 and 2.63 mg/L. The percentages of the samples considered “low risk” for dental fluorosis development and of “maximum benefit” for dental caries prevention (0.55-0.84 mg F/L) in the first, second, third, fourth, fifth, sixth, and seventh years of the study were 82.0, 58.5, 37.4, 61.0, 89.9, 77.3, and 72.4%, respectively, and 69.0% for the entire period. Fluctuations of F levels were found in the public water supply in Bauru during the seven years of evaluation. These results suggest that external monitoring of water fluoridation by an independent assessor should be implemented in cities where there is adjusted fluoridation. This measure should be continued in order to verify that fluoride levels are suitable and, if not, to provide support for the appropriate adjustments
Resumo:
The aim of this study was to assess, using the DPPH assay, the antioxidant activity of several substances that could be proposed to immediately revert the problems caused by bleaching procedures. The percentage of antioxidant activity (AA%) of 10% ascorbic acid solution (AAcidS), 10% ascorbic acid gel (AAcidG), 10% sodium ascorbate solution (SodAsS), 10% sodium ascorbate gel (SodAsG), 10% sodium bicarbonate (Bicarb), Neutralize® (NE), Desensibilize® (DES), catalase C-40 at 10 mg/mL (CAT), 10% alcohol solution of alpha-tocopherol (VitE), Listerine® (LIS), 0.12% chlorhexidine (CHX), Croton Lechleri (CL), 10 % aqueous solution of Uncaria Tomentosa (UT), artificial saliva (ArtS) and 0.05% sodium fluoride (NaF) was assessed in triplicate by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical assay. All substances exhibited antioxidant activity, except for CL. AAcidS, AAcidG and VitE exhibited the highest AA% (p<0.05). On the contrary, CHX, NE, LIS and NaF showed the lowest AA% (p<0.05). In conclusion, AAcidS, AAcidG, SodAsS, SodAsG and VitE presented the highest antioxidant activity among substances tested in this study. The DPPH assay provides an easy and rapid way to evaluate potential antioxidants.
Resumo:
Recent progress in understanding the molecular basis of autophagy has demonstrated its importance in several areas of human health. Affordable screening techniques with higher sensitivity and specificity to identify autophagy are, however, needed to move the field forward. In fact, only laborious and/or expensive methodologies such as electron microscopy, dye-staining of autophagic vesicles, and LC3-II immunoblotting or immunoassaying are available for autophagy identification. Aiming to fulfill this technical gap, we describe here the association of three widely used assays to determine cell viability - Crystal Violet staining (CVS), 3-[4, 5-dimethylthiaolyl]-2, 5-diphenyl-tetrazolium bromide (MTT) reduction, and neutral red uptake (NRU) - to predict autophagic cell death in vitro. The conceptual framework of the method is the superior uptake of NR in cells engaging in autophagy. NRU was then weighted by the average of MTT reduction and CVS allowing the calculation of autophagic arbitrary units (AAU), a numeric variable that correlated specifically with the autophagic cell death. The proposed strategy is very useful for drug discovery, allowing the investigation of potential autophagic inductor agents through a rapid screening using mammalian cell lines B16-F10, HaCaT, HeLa, MES-SA, and MES-SA/Dx5 in a unique single microplate.