23 resultados para X-Linked Intellectual Disability
Resumo:
CD40 ligand (CD40L) deficiency or X-linked hyper-IgM syndrome (X-HIGM) is a well-described primary immunodeficiency in which Pneumocystis jiroveci pneumonia is a common clinical feature. We have identified an unusual high incidence of fungal infections and other not yet described infections in a cohort of 11 X-HIGM patients from nine unrelated Brazilian families. Among these, we describe the first case of paracoccidioidomycosis (PCM) in X-HIGM. The molecular genetic analysis of CD40L was performed by gene sequencing and evaluation of CD40L protein expression. Nine of these 11 patients (82%) had fungal infections. These included fungal species common to CD40L deficiency (P. jiroveci and Candida albicans) as well as Paracoccidioides brasiliensis. One patient presented with PCM at age 11 years and is now doing well at 18 years of age. Additionally, one patient presented with a simultaneous infection with Klebsiella and Acinetobacter, and one with condyloma caused by human papilloma virus. Molecular analysis revealed four previously described CD40L mutations, two novel missense mutations (c.433 T>G and c.476 G>C) resulting in the absence of CD40L protein expression by activated CD4(+) cells and one novel insertion (c.484_485insAA) within the TNFH domain leading to a frame shift and premature stop codon. These observations demonstrated that the susceptibility to fungal infections in X-HIGM extends beyond those typically associated with X-HIGM (P. jiroveci and C. albicans) and that these patients need to be monitored for those pathogens.
Resumo:
Duchenne muscular dystrophy (DMD) is a recessive X-linked form of muscular dystrophy characterized by progressive and irreversible degeneration of the muscles. The mdx mouse is the classical animal model for DMD, showing similar molecular and protein defects. The mdx mouse, however, does not show significant muscle weakness, and the diaphragm muscle is significantly more degenerated than skeletal muscles. In this work, magnetic resonance spectroscopy (MRS) was used to study the metabolic profile of quadriceps and diaphragm muscles from mdx and control mice. Using principal components analysis (PCA), the animals were separated into groups according to age and lineages. The classification was compared to histopathological analysis. Among the 24 metabolites identified from the nuclear MR spectra, only 19 were used by the PCA program for classification purposes. These can be important key biomarkers associated with the progression of degeneration in mdx muscles and with natural aging in control mice. Glutamate, glutamine, succinate, isoleucine, acetate, alanine and glycerol were increased in mdx samples as compared to control mice, in contrast to carnosine, taurine, glycine, methionine and creatine that were decreased. These results suggest that MRS associated with pattern recognition analysis can be a reliable tool to assess the degree of pathological and metabolic alterations in the dystrophic tissue, thereby affording the possibility of evaluation of beneficial effects of putative therapies. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background: Several studies in Drosophila have shown excessive movement of retrogenes from the X chromosome to autosomes, and that these genes are frequently expressed in the testis. This phenomenon has led to several hypotheses invoking natural selection as the process driving male-biased genes to the autosomes. Metta and Schlotterer (BMC Evol Biol 2010, 10:114) analyzed a set of retrogenes where the parental gene has been subsequently lost. They assumed that this class of retrogenes replaced the ancestral functions of the parental gene, and reported that these retrogenes, although mostly originating from movement out of the X chromosome, showed female-biased or unbiased expression. These observations led the authors to suggest that selective forces (such as meiotic sex chromosome inactivation and sexual antagonism) were not responsible for the observed pattern of retrogene movement out of the X chromosome. Results: We reanalyzed the dataset published by Metta and Schlotterer and found several issues that led us to a different conclusion. In particular, Metta and Schlotterer used a dataset combined with expression data in which significant sex-biased expression is not detectable. First, the authors used a segmental dataset where the genes selected for analysis were less testis-biased in expression than those that were excluded from the study. Second, sex-biased expression was defined by comparing male and female whole-body data and not the expression of these genes in gonadal tissues. This approach significantly reduces the probability of detecting sex-biased expressed genes, which explains why the vast majority of the genes analyzed (parental and retrogenes) were equally expressed in both males and females. Third, the female-biased expression observed by Metta and Schltterer is mostly found for parental genes located on the X chromosome, which is known to be enriched with genes with female-biased expression. Fourth, using additional gonad expression data, we found that autosomal genes analyzed by Metta and Schlotterer are less up regulated in ovaries and have higher chance to be expressed in meiotic cells of spermatogenesis when compared to X-linked genes. Conclusions: The criteria used to select retrogenes and the sex-biased expression data based on whole adult flies generated a segmental dataset of female-biased and unbiased expressed genes that was unable to detect the higher propensity of autosomal retrogenes to be expressed in males. Thus, there is no support for the authors' view that the movement of new retrogenes, which originated from X-linked parental genes, was not driven by selection. Therefore, selection-based genetic models remain the most parsimonious explanations for the observed chromosomal distribution of retrogenes.
Resumo:
Fabry disease (FD) is an X-linked inborn error of glycosphingolipid catabolism that results from mutations in the alpha-galactosidase A (GLA) gene. Evaluating the enzymatic activity in male individuals usually performs the diagnosis of the disease, but in female carriers the diagnosis based only on enzyme assays is often inconclusive. In this work, we analyzed 568 individuals from 102 families with suspect of FD. Overall, 51 families presented 38 alterations in the GLA gene, among which 19 were not previously reported in literature. The alterations included 17 missense mutations, 7 nonsense mutations, 7 deletions, 6 insertions and 1 in the splice site. Six alterations (R112C, R118C, R220X, R227X, R342Q and R356W) occurred at CpG dinucleotides. Five mutations not previously described in the literature (A156D, K237X, A292V, I317S, c.1177_1178insG) were correlated with low GLA enzyme activity and with prediction of molecular damages. From the 13 deletions and insertions, 7 occurred in exons 6 or 7 (54%) and 11 led to the formation of a stop codon. The present study highlights the detection of new genomic alterations in the GLA gene in the Brazilian population, facilitating the selection of patients for recombinant enzyme-replacement trials and offering the possibility to perform prenatal diagnosis. Journal of Human Genetics (2012) 57, 347-351; doi:10.1038/jhg.2012.32; published online 3 May 2012
Resumo:
Abstract Background The increase in life expectancy within the general population has resulted in an increasing number of elderly adults, including patients with Down syndrome (DS), with a current life expectancy of about 50 years. We evaluate the parameters of humoral and cellular immune response, the quantitative expression of the regulator of calcineurin1 gene (RCAN1) and the production of cytokines. The study group consisted of adults DS (n = 24) and a control group with intellectual disability without Down syndrome (ID) (n = 21) and living in a similar environmental background. It was evaluated serology, immunophenotyping, the quantitative gene expression of RCAN1 and the production of cytokines. Results In the DS group, the results showed an increase in NK cells, CD8, decreased CD19 (p < 0.05) and an increase spontaneous production of IFNgamma, TNFalpha and IL-10 (p < 0.05). There was not any difference in RCAN1 gene expression between the groups. Conclusions These data suggest a similar humoral response in the two groups. The immunophenotyping suggests sign of premature aging of the immune system and the cytokine production show a proinflammatory profile.
Resumo:
Abstract Background The etiology of idiopathic scoliosis remains unknown and different factors have been suggested as causal. Hereditary factors can also determine the etiology of the disease; however, the pattern of inheritance remains unknown. Autosomal dominant, X-linked and multifactorial patterns of inheritances have been reported. Other studies have suggested possible chromosome regions related to the etiology of idiopathic scoliosis. We report the genetic aspects of and investigate chromosome regions for adolescent idiopathic scoliosis in a Brazilian family. Methods Evaluation of 57 family members, distributed over 4 generations of a Brazilian family, with 9 carriers of adolescent idiopathic scoliosis. The proband presented a scoliotic curve of 75 degrees, as determined by the Cobb method. Genomic DNA from family members was genotyped. Results Locating a chromosome region linked to adolescent idiopathic scoliosis was not possible in the family studied. Conclusion While it was not possible to determine a chromosome region responsible for adolescent idiopathic scoliosis by investigation of genetic linkage using microsatellites markers during analysis of four generations of a Brazilian family with multiple affected members, analysis including other types of genomic variations, like single nucleotide polymorphisms (SNPs) could contribute to the continuity of this study.
Resumo:
Abstract Introduction Toxoplasmosis, a zoonotic protozoal disease caused by toxoplasma gondii, is prevalent throughout the world, affecting a large proportion of persons who usually have no symptoms. Glucose 6 phosphate dehydrogenase deficiency, an X-linked inherited disorder, is present in over 400 million people world wide. It is more common in tropical and subtropical countries and is one of the important causes of hemolytic anemia. Case presentation This case report relates the occurrence of the two diseases simultaneously in a child of five years old. Conclusion Patients with glucose-6-phosphate dehydrogenase deficiency are more susceptible to toxoplasmosis and this case report, reinforce the findings of this propensity and alert us for such possibility, what it is important, therefore, the treatment of toxoplasmosis can cause serious hemolysis in these patients.
Resumo:
Glasses in the system xGeO(2)-(1-x)NaPO3 (0 <= x <= 0.50) were prepared by conventional melting quenching and characterized by thermal analysis, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and P-31 nuclear magnetic resonance (MAS NMR) techniques. The deconvolution of the latter spectra was aided by homonuclear J-resolved and refocused INADEQUATE techniques. The combined analyses of P-31 MAS NMR and O-1s XPS lineshapes, taking charge and mass balance considerations into account, yield the detailed quantitative speciations of the phosphorus, germanium, and oxygen atoms and their respective connectivities. An internally consistent description is possible without invoking the formation of higher-coordinated germanium species in these glasses, in agreement with experimental evidence in the literature. The structure can be regarded, to a first approximation, as a network consisting of P-(2) and P-(3) tetrahedra linked via four-coordinate germanium. As implied by the appearance of P-(3) units, there is a moderate extent of network modifier sharing between phosphate and germanate network formers, as expressed by the formal melt reaction P-(2) + Ge-(4) -> P-(3) + Ge-(3). The equilibrium constant of this reaction is estimated as K = 0.52 +/- 0.11, indicating a preferential attraction of network modifier by the phosphorus component. These conclusions are qualitatively supported by Raman spectroscopy as well as P-31{Na-23} and P-31{Na-23} rotational echo double resonance (REDOR) NMR results. The combined interpretation of O-1s XPS and P-31 MAS NMR spectra shows further that there are clear deviations from a random connectivity scenario: heteroatomic P-O-Ge linkages are favored over homoatomic P-O-P and Ge-O-Ge linkages.