44 resultados para Western-blotting


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Increased plasma concentrations of free fatty acids (FFA) can lead to insulin resistance in skeletal muscle, impaired effects on mitochondrial function, including uncoupling of oxidative phosphorylation and decrease of endogenous antioxidant defenses. Nitric oxide (NO) is a highly diffusible gas that presents a half-life of 5-10 seconds and is involved in several physiological and pathological conditions. The effects of palmitic acid on nitric oxide (NO) production by rat skeletal muscle cells and the possible mechanism involved were investigated. Methods: Primary cultured rat skeletal muscle cells were treated with palmitic acid and NO production was assessed by nitrite measurement (Griess method) and 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Nuclear factor-kappa B (NF-kappa B) activation was evaluated by electrophoretic mobility shift assay and iNOS protein content by western blotting. Results: Palmitic acid treatment increased nitric oxide production. This effect was abolished by treatment with NOS inhibitors, L-nitro-arginine (LNA) and L-nitro-arginine methyl esther (L-NAME). NF-kappa B activation and iNOS content were increased due to palmitic acid treatment. The participation of superoxide on nitric oxide production was investigated by incubating the cells with DAF-2-DA in the presence or absence of palmitic acid, a superoxide generator system (X-XO), a mixture of NOS inhibitors and SOD-PEG (superoxide dismutase linked to polyethylene glycol). Palmitic acid and X-XO system increased NO production and this effect was abolished when cells were treated with NOS inhibitors and also with SOD-PEG. Conclusions: In summary, palmitic acid stimulates NO production in cultured skeletal muscle cells through production of superoxide, nuclear factor-kappa B activation and increase of iNOS protein content. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tumor cells induce the disruption of homeostasis between cellular and extracellular compartments to favor tumor progression. The expression of fibronectin (FN), a matrix glycoprotein, is increased in several carcinoma cell types, including renal cell carcinoma (RCC). RCC are highly vascularized tumors and are often amenable to antiangiogenic therapy. Endostatin (ES) is a fragment of collagen XVIII that possesses antiangiogenic activity. In this study, we examined the modulation of FN gene expression by ES gene therapy in a murine metastatic renal cell carcinoma (mRCC) model. Balb/C mice bearing Renca cells were treated with NIH/3T3-LXSN cells or NIH/3T3-LendSN cells. At the end of the experiment, the ES serum levels were measured, and the FN gene expression was assessed using real-time PCR. The tissue FN was evaluated by western blotting and by immunofluorescence analysis. The ES serum levels in treated mice were higher than those in the control group (P < 0.05). ES treatment led to significant decreases at the FN mRNA (P < 0.001) and protein levels (P < 0.01). Here, we demonstrate the ES antitumor effect that is mediated by down-regulation of FN expression in mRCC. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been previously shown that besides its classical role in blood pressure control the reninangiotensin system, mainly by action of angiotensin II on the AT1 receptor, exerts pro-inflammatory effects such as by inducing the production of cytokines. More recently, alternative pathways to this system were described, such as binding of angiotensin-(17) to receptor Mas, which was shown to counteract some of the effects evoked by activation of the angiotensin IIAT1 receptor axis. Here, by means of different molecular approaches we investigated the role of angiotensin-(17) in modulating inflammatory responses triggered in mouse peritoneal macrophages. Our results show that receptor Mas transcripts were up-regulated by eightfold in LPS-induced macrophages. Interestingly, macrophage stimulation with angiotensin-(17), following to LPS exposure, evoked an attenuation in expression of TNF-a and IL-6 pro-inflammatory cytokines; where this event was abolished when the receptor Mas selective antagonist A779 was also included. We then used heterologous expression of the receptor Mas in HEK293T cells to search for the molecular mechanisms underlying the angiotensin-(17)-mediated anti-inflammatory responses by a kinase array; what suggested the involvement of the Src kinase family. In LPS-induced macrophages, this finding was corroborated using the PP2 compound, a specific Src kinase inhibitor; and also by Western blotting when we observed that Ang-(17) attenuated the phosphorylation levels of Lyn, a member of the Src kinase family. Our findings bring evidence for an anti-inflammatory role for angiotensin-(17) at the cellular level, as well as show that its probable mechanism of action includes the modulation of Src kinases activities. J. Cell. Physiol. 227: 21172122, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Iodide excess acutely downregulates NIS mRNA expression, as already demonstrated. PCCl3 cells treated or not with Nal, Nal + NaClO4 or Nal + Methimazole, for 30 min to 24 h, were used to further explore how iodide reduces NIS gene expression. NIS mRNA expression was evaluated by Real-Time PCR; its poly(A) tail length, by RACE-PAT; its translation rate, by polysome profile; total NIS content, by Western blotting. NIS mRNA decay rate was evaluated in actinomycin-D-treated cells, incubated with or without Nal for 0-6 h. Iodide treatment caused a reduction in NIS mRNA expression, half-life, poly(A) tail length, recruitment to ribosomes, as well as NIS protein expression. Perchlorate, but not methimazole, prevented these effects. Therefore, reduced poly(A) tail length of NIS mRNA seems to be related to its decreased half-life, in addition to its translation impairment. These data provide new insights about the molecular mechanisms involved in the rapid and posttranscriptional inhibitory effect of iodide on NIS expression. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 15-deoxy-(Delta 12,14)-PG J(2) (15d-PGJ(2)) has demonstrated excellent anti-inflammatory results in different experimental models. It can be used with a polymeric nanostructure system for modified drug release, which can change the therapeutic properties of the active principle, leading to increased stability and slower/prolonged release. The aim of the current study was to test a nano-technological formulation as a carrier for 15d-PGJ(2), and to investigate the immunomodulatory effects of this formulation in a mouse periodontitis model. Poly (D, L-lactide-coglycolide) nanocapsules (NC) were used to encapsulate 15d-PGJ(2). BALB/c mice were infected on days 0, 2, and 4 with Aggregatibacter actinomycetemcomitans and divided into groups (n = 5) that were treated daily during 15 d with 1, 3, or 10 mu g/kg 15d-PGJ(2)-NC. The animals were sacrificed, the submandibular lymph nodes were removed for FACS analysis, and the jaws were analyzed for bone resorption by morphometry. Immunoinflammatory markers in the gingival tissue were analyzed by reverse transcriptase-quantitative PCR, Western blotting, or ELISA. Infected animals treated with the 15d-PGJ(2)-NC presented lower bone resorption than infected animals without treatment (p < 0.05). Furthermore, infected animals treated with 10 mu g/kg 15d-PGJ(2)-NC had a reduction of CD4(+)CD25(+)FOXP3(+) cells and CD4/CD8 ratio in the submandibular lymph node (p < 0.05). Moreover, CD55 was upregulated, whereas RANKL was downregulated in the gingival tissue of the 10 mu g/kg treated group (p < 0.05). Several proinflammatory cytokines were decreased in the group treated with 10 mu g/kg 15d-PGJ(2)-NC, and high amounts of 15d-PGJ(2) were observed in the gingiva. In conclusion, the 15d-PGJ(2)-NC formulation presented immunomodulatory effects, decreasing bone resorption and inflammatory responses in a periodontitis mouse model. The Journal of Immunology, 2012, 189: 1043-1052.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evidences have suggested that the endocannabinoid system is overactive in obesity, resulting in enhanced endocannabinoid levels in both circulation and visceral adipose tissue. The blockade of cannabinoid receptor type 1 (CB1) has been proposed for the treatment of obesity. Besides loss of body weight, CB1 antagonism improves insulin sensitivity, in which the glucose transporter type 4 (GLUT4) plays a key role. The aim of this study was to investigate the modulation of GLUT4-encoded gene (Slc2a4 gene) expression by CB1 receptor. For this, 3T3-L1 adipocytes were incubated in the presence of a highly selective CB1 receptor agonist (1 mu M arachidonyl-2'-chloroethylamide) and/or a CB1 receptor antagonist/inverse agonist (0.1, 0.5, or 1 mu M AM251, 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide). After acute (2 and 4 h) and chronic (24 h) treatments, cells were harvested to evaluate: i) Slc2a4, Cnr1 (CB1 receptor-encoded gene), and Srebf1 type a (SREBP-1a type-encoded gene) mRNAs (real-time PCR); ii) GLUT4 protein (western blotting); and iii) binding activity of nuclear factor (NF)-kappa B and sterol regulatory element-binding protein (SREBP)-1 specifically in the promoter of Slc2a4 gene (electrophoretic mobility shift assay). Results revealed that both acute and chronic CB1 receptor antagonism greatly increased (similar to 2.5-fold) Slc2a4 mRNA and protein content. Additionally, CB1-induced upregulation of Slc2a4 was accompanied by decreased binding activity of NF-kappa B at 2 and 24 h, and by increased binding activity of the SREBP-1 at 24 h. In conclusion, these findings reveal that the blockade of CB1 receptor markedly increases Slc2a4/GLUT4 expression in adipocytes, a feature that involves NF-kappa B and SREBP-1 transcriptional regulation. Journal of Molecular Endocrinology (2012) 49, 97-106

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrosyl ruthenium complexes are promising NO donor agents with numerous advantages for the biologic applications of NO. We have characterized the NO release from the nitrosyl ruthenium complex [Ru(NO2)(bpy)(2)(4-pic)](+) (I) and the reactive oxygen/nitrogen species (ROS/RNS)-mediated NO actions on isolated rat liver mitochondria. The results indicated that oxidation of mitochondrial NADH promotes NO release from (I) in a manner mediated by NO2 formation (at neutral pH) as in mammalian cells, followed by an oxygen atom transfer mechanism (OAT). The NO released from (I) uncoupled mitochondria at low concentrations/incubation times and inhibited the respiratory chain at high concentrations/incubation times. In the presence of ROS generated by mitochondria NO gave rise to peroxynitrite, which, in turn, inhibited the respiratory chain and oxidized membrane protein-thiols to elicit a Ca2+-independent mitochondrial permeability transition; this process was only partially inhibited by cyclosporine-A, almost fully inhibited by the thiol reagent N-ethylmaleimide (NEM) and fully inhibited by the NO scavenger 2-(4-carboxyphenyl)-4,45,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). These actions correlated with the release of cytochrome c from isolated mitochondria as detected by Western blotting analysis. These events, typically involved in cell necrosis and/or apoptosis denote a potential specific action of (I) and analogs against tumor cells via mitochondria-mediated processes. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Post-rest contraction (PRC) of cardiac muscle provides indirect information about the intracellular calcium handling. Objective: Our aim was to study the behavior of PRC, and its underlying mechanisms, in rats with myocardial infarction. Methods: Six weeks after coronary occlusion, the contractility of papillary muscles (PM) obtained from sham-operated (C, n = 17), moderate infarcted (MMI, n = 10) and large infarcted (LMI, n = 14) rats was evaluated, following rest intervals of 10 to 60 seconds before and after incubation with lithium chloride (Li+) substituting sodium chloride or ryanodine (Ry). Protein expression of SR Ca(2+)-ATPase (SERCA2), Na+/Ca2+ exchanger (NCX), phospholamban (PLB) and phospho-Ser(16)-PLB were analyzed by Western blotting. Results: MMI exhibited reduced PRC potentiation when compared to C. Opposing the normal potentiation for C, post-rest decays of force were observed in LMI muscles. In addition, Ry blocked PRC decay or potentiation observed in LMI and C; Li+ inhibited NCX and converted PRC decay to potentiation in LMI. Although MMI and LMI presented decreased SERCA2 (72 +/- 7% and 47 +/- 9% of Control, respectively) and phospho-Ser(16)-PLB (75 +/- 5% and 46 +/- 11%, respectively) protein expression, overexpression of NCX (175 +/- 20%) was only observed in LMI muscles. Conclusion: Our results showed, for the first time ever, that myocardial remodeling after MI in rats may change the regular potentiation to post-rest decay by affecting myocyte Ca(2+) handling proteins. (Arq Bras Cardiol 2012;98(3):243-251)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: This study aimed to describe the expression of oestrogen receptor (ER)alpha, ER beta and aromatase in salivary gland adenoid cystic carcinoma (ACC). Methods and results: ER alpha, ER beta and aromatase expression was analysed by immunohistochemistry in tissue microarray blocks from 38 cases of ACC and seven normal salivary glands. The intracellular localization and amount of total protein expression were investigated by immunofluorescence and western blotting in an ACC cell line. Western blotting analysis showed overexpression of ER alpha, ER beta and aromatase in the ACC cell line; however, with immunofluorescence, only ER beta was shown to be expressed in the nucleus. Immunohistochemistry revealed positive nuclear expression of ER beta, positive cytoplasmic expression of aromatase and a lack of ER alpha expression as compared with normal salivary glands. Conclusions: The nuclear expression of ER beta indicates that oestrogen may be active in ACC and possibly able to mediate E2-targeted gene transcription. This study strongly suggests that ER beta may be involved in tumour progression, playing a role in tumour development, and thus corroborating the indication for ER antagonists in the clinical control of ACC. This study opens a new perspective on the potential use of anti-oestrogens and aromatase inhibitors as therapeutic agents against ACC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Systemic sclerosis (SSc) is characterized by fibrosis of the skin and internal organs. The present study was undertaken to examine the effects of ciprofloxacin, a fluoroquinolone antibiotic implicated in matrix remodeling, on dermal and lung fibroblasts obtained from SSc patients. Dermal and lung fibroblasts from SSc patients and healthy subjects were treated with ciprofloxacin. Western blotting was used to analyze protein levels and RT-PCR was used to measure in RNA expression. The pharmacologic inhibitor UO126 was used to block Erk1/2 signaling. SSc dermal fibroblasts demonstrated a significant decrease in collagen type I mRNA and protein levels after antibiotic treatment, while healthy dermal fibroblasts were less sensitive to ciprofloxacin, downregulating collagen only at the protein levels. Connective tissue growth factor (CCN2) gene expression was significantly reduced and matrix metalloproteinase (MMPI) levels were enhanced after ciprofloxacin treatment to a similar extent in healthy and SSc fibroblasts. Ciprofloxacin induced Erk1/2 phosphorylation, and Erk1/2 blockade completely prevented MMP1 upregulation. However. Smad1 and Smad3 activation in response to TGF beta was not affected. The expression of friend leukemia integration factor 1 (Fli1). a transcriptional repressor of collagen, was increased after treatment with ciprofloxacin only in SSc fibroblasts, and this was accompanied by a decrease in the levels of DNA methyltransferase 1 (Dnmt1). Similar effects were observed in SSc-interstitial lung disease (ILD) lung fibroblasts. In summary, our study demonstrates that ciprofloxacin has antifibrotic actions in SSc dermal and lung fibroblasts via the downregulation of Dnmt1, the upregulation of Fli1 and induction of MMPI gene expression via an Erk1/2-dependent mechanism. Thus, our data suggest that ciprofloxacin may he an attractive therapy for SSc skin and lung fibrosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIM: To evaluate for the first time the protein and mRNA expression of 14-3-3 epsilon in gastric carcinogenesis. METHODS: 14-3-3 epsilon protein expression was determined by western blotting, and mRNA expression was examined by real-time quantitative RT-PCR in gastric tumors and their matched non-neoplastic gastric tissue samples. RESULTS: Authors observed a significant reduction of 14-3-3 epsilon protein expression in gastric cancer (GC) samples compared to their matched non-neoplastic tissue, Reduced levels of 14-3-3 epsilon were also associated with diffuse-type GC and early-onset of this pathology. Our data suggest that reduced 14-3-3 epsilon may have a role in gastric carcinogenesis process. CONCLUSION: Our results reveal that the reduced 14-3-3 epsilon expression in GC and investigation of 14-3-3 epsilon interaction partners may help to elucidate the carcinogenesis process. (C) 2012 Baishideng. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pneumococcal surface protein C (PspC) is an important candidate for a cost-effective vaccine with broad coverage against pneumococcal diseases. Previous studies have shown that Streptococcus pneumoniae is able to bind to both human factor H (FH), an inhibitor of complement alternative pathway, and human secretory IgA (sIgA) via PspC. PspC was classified into 11 groups based on variations of the gene. In this work, we used three PspC fragments from different groups (PspC3, PspC5, and PspC8) to immunize mice for the production of antibodies. Immunization with PspC3 induced antibodies that recognized the majority of the clinical isolates as analyzed by Western blotting of whole-cell extracts and flow cytometry of intact bacteria, while anti-PspC5 antibodies showed cross-reactivity with the paralogue pneumococcal surface protein A (PspA), and anti-PspC8 antibodies reacted only with the PspC8-expressing strain. Most of the isolates tested showed strong binding to FH and weaker interaction with sIgA. Preincubation with anti-PspC3 and anti-PspC5 IgG led to some inhibition of binding of FH, and preincubation with anti-PspC3 partially inhibited sIgA binding in Western blotting. The analysis of intact bacteria through flow cytometry showed only a small decrease in FH binding after incubation of strain D39 with anti-PspC3 IgG, and one clinical isolate showed inhibition of sIgA binding by anti-PspC3 IgG. We conclude that although anti-PspC3 antibodies were able to recognize PspC variants from the majority of the strains tested, partial inhibition of FH and sIgA binding through anti-PspC3 antibodies in vitro could be observed for only a restricted number of isolates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The angiotensin II type 1 receptor (AT1R) is involved in the development of cardiac hypertrophy promoted by thyroid hormone. Recently, we demonstrated that triiodothyronine (T-3) rapidly increases AT1R mRNA and protein levels in cardiomyocyte cultures. However, the molecular mechanisms responsible for these rapid events are not yet known. In this study, we investigated the T-3 effect on AT1R mRNA polyadenylation in cultured cardiomyocytes as well as on the expression of microRNA-350 (miR-350), which targets AT1R mRNA. The transcriptional and translational actions mediated by T-3 on AT1R levels were also assessed. The total content of ubiquitinated proteins in cardiomyocytes treated with T-3 was investigated. Our data confirmed that T-3 rapidly raised AT1R mRNA and protein levels, as assessed by real-time PCR and western blotting respectively. The use of inhibitors of mRNA and protein synthesis prevented the rapid increase in AT1R protein levels mediated by T-3. In addition, T-3 rapidly increased the poly-A tail length of the AT1R mRNA, as determined by rapid amplification of cDNA ends poly-A test, and decreased the content of ubiquitinated proteins in cardiomyocytes. On the other hand, T-3 treatment increased miR-350 expression. In parallel with its transcriptional and translational effects on the AT1R, T-3 exerted a rapid posttranscriptional action on AT1R mRNA polyadenylation, which might be contributing to increase transcript stability, as well as on translational efficiency, resulting to the rapid increase in AT1R mRNA expression and protein levels. Finally, these results show, for the first time, that T-3 rapidly triggers distinct mechanisms, which might contribute to the regulation of AT1R levels in cardiomyocytes. Journal of Molecular Endocrinology (2012) 49, 11-20

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: We sought to investigate the effects of antenatal retinoic acid on the pulmonary vasculature and vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFR) expression in a nitrofen-induced congenital diaphragmatic hernia (CDH) model. STUDY DESIGN: Rat fetuses were exposed to nitrofen at gestational day 9.5 and/or all-trans retinoic acid (ATRA) at gestational days 18.5-20.5. We assessed lung growth, airway, and vascular morphometry. VEGF, VEGFR1, and VEGFR2 expression was analyzed by Western blotting and immunohistochemistry. Continuous data were analyzed by analysis of variance and Kruskal-Wallis test. RESULTS: CDH decreased lung to body weight ratio, increased mean linear intercept and mean transection length/airspace, and decreased mean airspace cord length. ATRA did not affect lung growth or morphometry. CDH increased proportional medial wall thickness of arterioles while ATRA reduced it. ATRA recovered expression of VEGF and receptors, which were reduced in CDH. CONCLUSION: Retinoic acid and VEGF may provide pathways for preventing pulmonary hypertension in CDH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background Obesity has been associated with a variety of disease such as type II diabetes mellitus, arterial hypertension and atherosclerosis. Evidences have shown that exercise training promotes beneficial effects on these disorders, but the underlying mechanisms are not fully understood. The aim of this study was to investigate whether physical preconditioning prevents the deleterious effect of high caloric diet in vascular reactivity of rat aortic and mesenteric rings. Methods Male Wistar rats were divided into sedentary (SD); trained (TR); sedentary diet (SDD) and trained diet (TRD) groups. Run training (RT) was performed in sessions of 60 min, 5 days/week for 12 weeks (70–80% VO2max). Triglycerides, glucose, insulin and nitrite/nitrate concentrations (NOx-) were measured. Concentration-response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) were obtained. Expression of Cu/Zn superoxide dismutase (SOD-1) was assessed by Western blotting. Results High caloric diet increased triglycerides concentration (SDD: 216 ± 25 mg/dl) and exercise training restored to the baseline value (TRD: 89 ± 9 mg/dl). Physical preconditioning significantly reduced insulin levels in both groups (TR: 0.54 ± 0.1 and TRD: 1.24 ± 0.3 ng/ml) as compared to sedentary animals (SD: 0.87 ± 0.1 and SDD: 2.57 ± 0.3 ng/ml). On the other hand, glucose concentration was slightly increased by high caloric diet, and RT did not modify this parameter (SD: 126 ± 6; TR: 140 ± 8; SDD: 156 ± 8 and TRD 153 ± 9 mg/dl). Neither high caloric diet nor RT modified NOx- levels (SD: 27 ± 4; TR: 28 ± 6; SDD: 27 ± 3 and TRD: 30 ± 2 μM). Functional assays showed that high caloric diet impaired the relaxing response to ACh in mesenteric (about 13%), but not in aortic rings. RT improved the relaxing responses to ACh either in aortic (28%, for TR and 16%, to TRD groups) or mesenteric rings (10%, for TR and 17%, to TRD groups) that was accompanied by up-regulation of SOD-1 expression and reduction in triglycerides levels. Conclusion The improvement in endothelial function by physical preconditioning in mesenteric and aortic arteries from high caloric fed-rats was directly related to an increase in NO bioavailability to the smooth muscle mostly due to SOD-1 up regulation.