19 resultados para Weighted Distributions
Resumo:
The exact expressions for the characteristics of synchrotron radiation of charged particles in the first excited state are obtained in analytical form using quantum theory methods. We performed a detailed analysis of the angular distribution structure of radiation power and its polarization for particles with spin 0 and 1/2. It is shown that the exact quantum calculations lead to results that differ substantially from the predictions of classical theory.
Resumo:
Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e. g., fractional Brownian motion, Levy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always "remember" the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker's memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation sigma t which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.
Resumo:
This paper considers likelihood-based inference for the family of power distributions. Widely applicable results are presented which can be used to conduct inference for all three parameters of the general location-scale extension of the family. More specific results are given for the special case of the power normal model. The analysis of a large data set, formed from density measurements for a certain type of pollen, illustrates the application of the family and the results for likelihood-based inference. Throughout, comparisons are made with analogous results for the direct parametrisation of the skew-normal distribution.
Resumo:
We study the action of a weighted Fourier–Laplace transform on the functions in the reproducing kernel Hilbert space (RKHS) associated with a positive definite kernel on the sphere. After defining a notion of smoothness implied by the transform, we show that smoothness of the kernel implies the same smoothness for the generating elements (spherical harmonics) in the Mercer expansion of the kernel. We prove a reproducing property for the weighted Fourier–Laplace transform of the functions in the RKHS and embed the RKHS into spaces of smooth functions. Some relevant properties of the embedding are considered, including compactness and boundedness. The approach taken in the paper includes two important notions of differentiability characterized by weighted Fourier–Laplace transforms: fractional derivatives and Laplace–Beltrami derivatives.