23 resultados para Visibility distance.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimators of home-range size require a large number of observations for estimation and sparse data typical of tropical studies often prohibit the use of such estimators. An alternative may be use of distance metrics as indexes of home range. However, tests of correlation between distance metrics and home-range estimators only exist for North American rodents. We evaluated the suitability of 3 distance metrics (mean distance between successive captures [SD], observed range length [ORL], and mean distance between all capture points [AD]) as indexes for home range for 2 Brazilian Atlantic forest rodents, Akodon montensis (montane grass mouse) and Delomys sublineatus (pallid Atlantic forest rat). Further, we investigated the robustness of distance metrics to low numbers of individuals and captures per individual. We observed a strong correlation between distance metrics and the home-range estimator. None of the metrics was influenced by the number of individuals. ORL presented a strong dependence on the number of captures per individual. Accuracy of SD and AD was not dependent on number of captures per individual, but precision of both metrics was low with numbers of captures below 10. We recommend the use of SD and AD instead of ORL and use of caution in interpretation of results based on trapping data with low captures per individual.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of spatial relations among objects in an image is an important vision problem that involves both shape analysis and structural pattern recognition. In this paper, we propose a new approach to characterize the spatial relation along, an important feature of spatial configurations in space that has been overlooked in the literature up to now. We propose a mathematical definition of the degree to which an object A is along an object B, based on the region between A and B and a degree of elongatedness of this region. In order to better fit the perceptual meaning of the relation, distance information is included as well. In order to cover a more wide range of potential applications, both the crisp and fuzzy cases are considered. In the crisp case, the objects are represented in terms of 2D regions or ID contours, and the definition of the alongness between them is derived from a visibility notion and from the region between the objects. However, the computational complexity of this approach leads us to the proposition of a new model to calculate the between region using the convex hull of the contours. On the fuzzy side, the region-based approach is extended. Experimental results obtained using synthetic shapes and brain structures in medical imaging corroborate the proposed model and the derived measures of alongness, thus showing that they agree with the common sense. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clustering problem consists in finding patterns in a data set in order to divide it into clusters with high within-cluster similarity. This paper presents the study of a problem, here called MMD problem, which aims at finding a clustering with a predefined number of clusters that minimizes the largest within-cluster distance (diameter) among all clusters. There are two main objectives in this paper: to propose heuristics for the MMD and to evaluate the suitability of the best proposed heuristic results according to the real classification of some data sets. Regarding the first objective, the results obtained in the experiments indicate a good performance of the best proposed heuristic that outperformed the Complete Linkage algorithm (the most used method from the literature for this problem). Nevertheless, regarding the suitability of the results according to the real classification of the data sets, the proposed heuristic achieved better quality results than C-Means algorithm, but worse than Complete Linkage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of curing tip distance and storage time in the kinetics of water diffusion (water sorption-W SP, solubility-W SB, and net water uptake) and color stability of a composite were evaluated. Composite samples were polymerized at different distances (5, 10, and 15 mm) and compared to a control group (0 mm). After desiccation, the specimens were stored in distilled water to evaluate the water diffusion over a 120-day period. Net water uptake was calculated (sum of WSP and WSB). The color stability after immersion in a grape juice was compared to distilled water. Data were submitted to three-way ANOVA/Tukey's test (α = 5%). The higher distances caused higher net water uptake (p < 0.05). The immersion in the juice caused significantly higher color change as a function of curing tip distance and the time (p < 0.05). The distance of photoactivation and storage time provide the color alteration and increased net water uptake of the resin composite tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to develop and implement a tool called intelligent tutoring system in an online course to help a formative evaluation in order to improve student learning. According to Bloom et al. (1971,117) formative evaluation is a systematic evaluation to improve the process of teaching and learning. The intelligent tutoring system may provide a timely and high quality feedback that not only informs the correctness of the solution to the problem, but also informs students about the accuracy of the response relative to their current knowledge about the solution. Constructive and supportive feedback should be given to students to reveal the right and wrong answers immediately after taking the test. Feedback about the right answers is a form to reinforce positive behaviors. Identifying possible errors and relating them to the instructional material may help student to strengthen the content under consideration. The remedial suggestion should be given in each answer with detaileddescription with regards the materials and instructional procedures before taking next step. The main idea is to inform students about what they have learned and what they still have to learn. The open-source LMS called Moodle was extended to accomplish the formative evaluation, high-quality feedback, and the communal knowledge presented here with a short online financial math course that is being offered at a large University in Brazil. The preliminary results shows that the intelligent tutoring system using high quality feedback helped students to improve their knowledge about the solution to the problems based on the errors of their past cohorts. The results and suggestion for future work are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work is to present the experience of workshops that have been developed at the University of Sao Paulo by the Integrated Library System in partnership with Research Commission. The poster presents the main results of workshops that were made in 2011, in two knowledge areas: life science and engineering, about science publication processes, and directed to graduates, pos-doctorates, researchers, professors and library staff. The realization of workshops made possible identifies gaps in different aspects of scholarly communication such as research planning, search information strategy, information organization, submission process, identification of journals with high impact, and so on, areas where professors and librarians can help. Besides, workshops reveal that the majority of participants believe in its importance. Despite the ubiquity of digital technology that transversely impacts all academic activities, it is imperative to promote efforts to find a convergence between information and media literacy in higher education and university research activities. This is particularly important when we talk about how science is produced, communicated and preserved for future use. In this scenario, libraries and librarians assume a new, more active and committed role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ACADEMIC CONTENTS: Digital Library of Theses and Dissertations, eAULAS, Open Educational Resources. SCIENTIFIC CONTENTS: Digital Library of USP Intellectual Production, Scientific Journals Portal. OTHER CONTENTS: Rare books, Maps, Images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ubiquity of time series data across almost all human endeavors has produced a great interest in time series data mining in the last decade. While dozens of classification algorithms have been applied to time series, recent empirical evidence strongly suggests that simple nearest neighbor classification is exceptionally difficult to beat. The choice of distance measure used by the nearest neighbor algorithm is important, and depends on the invariances required by the domain. For example, motion capture data typically requires invariance to warping, and cardiology data requires invariance to the baseline (the mean value). Similarly, recent work suggests that for time series clustering, the choice of clustering algorithm is much less important than the choice of distance measure used.In this work we make a somewhat surprising claim. There is an invariance that the community seems to have missed, complexity invariance. Intuitively, the problem is that in many domains the different classes may have different complexities, and pairs of complex objects, even those which subjectively may seem very similar to the human eye, tend to be further apart under current distance measures than pairs of simple objects. This fact introduces errors in nearest neighbor classification, where some complex objects may be incorrectly assigned to a simpler class. Similarly, for clustering this effect can introduce errors by “suggesting” to the clustering algorithm that subjectively similar, but complex objects belong in a sparser and larger diameter cluster than is truly warranted.We introduce the first complexity-invariant distance measure for time series, and show that it generally produces significant improvements in classification and clustering accuracy. We further show that this improvement does not compromise efficiency, since we can lower bound the measure and use a modification of triangular inequality, thus making use of most existing indexing and data mining algorithms. We evaluate our ideas with the largest and most comprehensive set of time series mining experiments ever attempted in a single work, and show that complexity-invariant distance measures can produce improvements in classification and clustering in the vast majority of cases.