98 resultados para Ventilator-induced lung injury


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Intestinal ischemia and reperfusion (I/R) is a documented cause of acute lung injury (ALI) and systemic inflammation. We previously reported that obstruction of thoracic lymphatic flow during intestinal I/R blunts pulmonary neutrophil recruitment and microvascular injury and decreases the systemic levels of tumor necrosis factor. Here, we consider the existence of a gut-lung axis promoting the induction of systemic inflammation, whereby drained intestinal lymph stimulates lung expression of adhesion molecules and matrix components and generation of inflammatory mediators. Material and Methods. Upon administration of anesthesia, male Wistar rats were subjected to occlusion of the superior mesenteric artery for 45 min, followed by 2 h of intestinal reperfusion (I/R); groups of rats were subjected to I/R with or without thoracic lymphatic duct ligation immediately before the procedure. The non-manipulated rats were used to investigate basal parameters. Results. Obstruction of thoracic lymphatic flow before intestinal I/R decreased the ability of cultured lung tissue explants to release IL-1 beta, IL-10, and VEGF. In contrast, lymphatic obstruction normalized the elevated lung expression of PECAM-1 caused by intestinal I/R. On the other hand, lung E-selectin expression was significantly reduced, whereas fibronectin expression and collagen synthesis were not affected. Lymph levels of LTB4 and TXB2 were found to be significantly increased. Conclusions. These data suggest that lymph factors drained from the intestine during ischemic trauma stimulate the lung to generate inflammatory mediators and alter the expression of adhesion molecules. Disturbances in lung homeostasis mediated by lymph might contribute to the spread of inflammatory processes, thereby accounting for the systemic inflammation induced by intestinal I/R. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. Results The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. Conclusion Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal ischemia/reperfusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. RESULTS: The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. CONCLUSION: Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate the effect of N-acetylcysteine (NAC) combined with fluid resuscitation on pulmonary cell death in rats induced with controlled hemorrhagic shock (HS). METHODS: Two arteries (MAP calculation and exsanguination) and one vein (treatments) were catheterized in 22 anesthetized rats. Two groups of male albino rats were induced with controlled HS at 35mmHg MAP for 60 min. After this period, the RL group was resuscitated with Ringer's lactate and the RL+NAC group was resuscitated with Ringer's lactate combined with 150mg/Kg NAC. The control group animals were cannulated only. The animals were euthanized after 120 min of fluid resuscitation. Lung tissue samples were collected to evaluate the following: histopathology, TUNEL and imunohistochemical expression of caspase 3. RESULTS: RL showed a greater number of cells stained by TUNEL than RL + NAC, but there was no change in caspase 3 expression in any group. CONCLUSION: N-acetylcysteine associate to fluid resuscitation, after hemorrhagic shock, decreased cell death attenuating lung injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

VIEIRA, R. D. P., A. C. TOLEDO, L. B. SILVA, F. M. ALMEIDA, N. R. DAMACENO-RODRIGUES, E. G. CALDINI, A. B. G. SANTOS, D. H. RIVERO, D. C. HIZUME, F. D. T. Q. S. LOPES, C. R. OLIVO, H. C. CASTRO-FARIA-NETO, M. A. MARTINS, P. H. N. SALDIVA, and M. DOLHNIKOFF. Anti-inflammatory Effects of Aerobic Exercise in Mice Exposed to Air Pollution. Med. Sci. Sports Exerc., Vol. 44, No. 7, pp. 1227-1234, 2012. Purpose: Exposure to diesel exhaust particles (DEP) results in lung inflammation. Regular aerobic exercise improves the inflammatory status in different pulmonary diseases. However, the effects of long-term aerobic exercise on the pulmonary response to DEP have not been investigated. The present study evaluated the effect of aerobic conditioning on the pulmonary inflammatory and oxidative responses of mice exposed to DEP. Methods: BALB/c mice were subjected to aerobic exercise five times per week for 5 wk, concomitantly with exposure to DEP (3 mg.mL (1); 10 mu L per mouse). The levels of exhaled nitric oxide, reactive oxygen species, cellularity, interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) were analyzed in bronchoalveolar lavage fluid, and the density of neutrophils and the volume proportion of collagen fibers were measured in the lung parenchyma. The cellular density of leukocytes expressing IL-1 beta, keratinocyte chemoattractant (KC), and TNF-alpha in lung parenchyma was evaluated with immunohistochemistry. The levels of IL-1 beta, KC, and TNF-alpha were also evaluated in the serum. Results: Aerobic exercise inhibited the DEP-induced increase in the levels of reactive oxygen species (P < 0.05); exhaled nitric oxide (P < 0.01); total (P < 0.01) and differential cells (P < 0.01); IL-6 and TNF-alpha levels in bronchoalveolar lavage fluid (P < 0.05); the level of neutrophils (P < 0.001); collagen density in the lung parenchyma (P < 0.05); the levels of IL-6, KC, and TNF-alpha in plasma (P < 0.05); and the expression of IL-1 beta, KC, and TNF-alpha by leukocytes in the lung parenchyma (P < 0.01). Conclusions: We conclude that long-term aerobic exercise presents protective effects in a mouse model of DEP-induced lung inflammation. Our results indicate a need for human studies that evaluate the pulmonary responses to aerobic exercise chronically performed in polluted areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Only about 15% of donor lungs are considered suitable for transplantation (LTx). Ex vivo lung perfusion (EVLP) has been developed as a method to reassess and repair damaged lungs. We report our experience with EVLP in non-acceptable donor lungs and evaluate its ability to recondition these lungs. METHODS: We studied lungs from 16 brain-dead donors rejected for LTx. After harvesting, the lungs were stored at 4 degrees C for 10 hours and subjected to normothermic EVLP with Steen Solution (Vitro life, Goteborg, Sweden) for 60 minutes. For functional evaluation, the following variables were assessed: partial pressure of arterial oxygen (Pao(2)), pulmonary vascular resistance (PVR), and lung compliance (LC). For histologic assessment, lung biopsy was done before harvest and after EVLP. Tissue samples were examined under light microscopy. To detect and quantify apoptosis, terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling assay was used. RESULTS: Thirteen lima donors were refused for having impaired lung function. The mean Pao(2) obtained in the organ donor at the referring hospital was 193.7 mm Hg and rose to 489 mm Hg after EVLP. During EVLP, the mean PVR was 652.5 dynes/sec/cm(5) and the mean LC was 48 ml/cm H2O. There was no significant difference between the mean Lung Injury Score before harvest and after EVLP. There was a trend toward a reduction in the median number of apoptotic cells after EVLP. CONCLUSIONS: EVLP improved lung function (oxygenation capacity) of organs considered unsuitable for transplantation. Lung tissue structure did not deteriorate even after 1 hour of normothermic perfusion. J Heart Lung Transplant 2012;31:305-9 (C) 2012 International Society for Heart and Lung Transplantation. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic Obstructive Pulmonary Disease (COPD) can be briefly described as air flow limitation and chronic dyspnea associated to an inflammatory response of the respiratory tract to noxious particles and gases. Its main feature is the obstruction of airflow and consequent chronic dyspnea. Despite recent advances, and the development of new therapeutic, medical and clinical approaches, a curative therapy is yet to be achieved. Therapies involving the use of tissue-specific or donor derived cells present a promising alternative in the treatment of degenerative diseases and injuries. Recent studies demonstrate that mesenchymal stem cells have the capacity to modulate immune responses in acute lung injury and pulmonary fibrosis in animal models, as well as in human patients. Due to these aspects, different groups raised the possibility that the stem cells from different sources, such as those found in bone marrow or adipose tissue, could act preventing the emphysematous lesion progression. In this paper, it is proposed a review of the current state of the art and future perspectives on the use of cell therapy in obstructive lung diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of N-Acetylcysteine (NAC), an unspecific antioxidant, on fatiguing contractile activity-induced injury were investigated. Twenty-four male Wistar rats were randomly assigned to two groups. The placebo group (N=12) received one injection of phosphate buffer (PBS) 1 h prior to contractile activity induced by electrical stimulation. The NAC group (NAC; N=12) received electrical stimulation for the same time period and NAC (500 mg/kg, i.p.) dissolved in PBS 1 h prior to electrical stimulation. The contralateral hindlimb was used as a control, except in the analysis of plasma enzyme activities, when a control group (rats placebo group not electrically stimulated and not treated) was included. The following parameters were measured: tetanic force, muscle fatigue, plasma activities of creatine kinase (CK) and lactate dehydrogenase (LDH), changes in muscle vascular permeability using Evans blue dye (EBD), muscle content of reactive oxygen species (ROS) and thiobarbituric acid-reactive substances (TBARS) and myeloperoxidase (MPO) activity. Muscle fatigue was delayed and tetanic force was preserved in NAC-treated rats. NAC treatment decreased plasma CK and LDH activities. The content of muscle-derived ROS, TBARS, EBD and MPO activity in both gastrocnemius and soleus muscles were also decreased by NAC pre-treatment. Thus, NAC has a protective effect against injury induced by fatiguing contractile activity in skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Experimental studies on lung preservation have always been performed using animal models. We present ex vivo lung perfusion as a new model for the study of lung preservation. Using human lungs instead of animal models may bring the results of experimental studies closer to what could be expected in clinical practice. METHOD: Brain-dead donors whose lungs had been declined by transplantation teams were used. The cases were randomized into two groups. In Group 1, Perfadex (R) was used for pulmonary preservation, and in Group 2, LPDnac, a solution manufactured in Brazil, was used. An ex vivo lung perfusion system was used, and the lungs were ventilated and perfused after 10 hours of cold ischemia. The extent of ischemic-reperfusion injury was measured using functional and histological parameters. RESULTS: After reperfusion, the mean oxygenation capacity was 405.3 mmHg in Group 1 and 406.0 mmHg in Group 2 (p=0.98). The mean pulmonary vascular resistance values were 697.6 and 378.3 dyn.s.cm(-5), respectively (p=0.035). The mean pulmonary compliance was 46.8 cm H2O in Group 1 and 49.3 ml/cm H2O in Group 2 (p=0.816). The mean wet/dry weight ratios were 2.06 and 2.02, respectively (p=0.87). The mean Lung Injury Scores for the biopsy performed after reperfusion were 4.37 and 4.37 in Groups 1 and 2, respectively (p=1.0), and the apoptotic cell counts were 118.75/mm(2) and 137.50/mm(2), respectively (p=0.71). CONCLUSION: The locally produced preservation solution proved to be as good as Perfadex (R). The clinical use of LPDnac may reduce costs in our centers. Therefore, it is important to develop new models to study lung preservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Objectives Transfusion-related acute lung injury (TRALI) is characterized by leukocyte transmigration and alveolar capillary leakage shortly after transfusion. TRALI pathogenesis has not been fully elucidated. In some cases, the infusion of alloantibodies (immune model), whereas in others the combination of neutrophil priming by proinflammatory molecules with the subsequent infusion of biological response modifiers (BRMs) in the hemocomponent (non-immune model) have been implicated. Our aim was to compare the pathological events involved in TRALI induced by antibodies or BRMs using murine models. Materials and Methods In the immune model, human HNA-2+ neutrophils were incubated in vitro with a monoclonal antibody (anti-CD177, clone 7D8) directed against the HNA-2 antigen and injected i.v. in NOD/SCID mice. In the non-immune model, BALB/c mice were treated with low doses of lipopolysaccharide (LPS) followed by platelet-activating factor (PAF) infusion 2 h later. Forty minutes after PAF administration, or 6 h after neutrophil injection, lungs were isolated and histological analysis, determination of a variety of cytokines and chemokines including keratinocyte-derived chemokine (KC), MIP-2, the interleukins IL-1 beta, IL-6, IL-8 as well as TNFa, cell influx and alveolar capillary leakage were performed. Results In both models, characteristic histological findings of TRALI and an increase in KC and MIP-2 levels were detected. In contrast to the immune model, in the non-immune model, there was a dramatic increase in IL-1 beta and TNFa. However, capillary leakage was only detected if PAF was administrated. Conclusions Regardless of the triggering event(s), KC, MIP-2 and integrins participate in TRALI pathogenesis, whereas PAF is essential for capillary leakage when two events are involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Early treatment in sepsis may improve outcome. The aim of this study was to evaluate how the delay in starting resuscitation influences the severity of sepsis and the treatment needed to achieve hemodynamic stability. Design: Prospective, randomized, controlled experimental study. Setting: Experimental laboratory in a university hospital. Subjects: Thirty-two anesthetized and mechanically ventilated pigs. Interventions: Pigs were randomly assigned (n = 8 per group) to a nonseptic control group or one of three groups in which fecal peritonitis (peritoneal instillation of 2 g/kg autologous feces) was induced, and a 48-hr period of protocolized resuscitation started 6 (Delta T-6 hrs), 12 (Delta T-12 hrs), or 24 (Delta T-24 hrs) hrs later. The aim of this study was to evaluate the impact of delays in resuscitation on disease severity, need for resuscitation, and the development of sepsis-associated organ and mitochondrial dysfunction. Measurements and Main Results: Any delay in starting resuscitation was associated with progressive signs of hypovolemia and increased plasma levels of interleukin-6 and tumor necrosis factor-alpha prior to resuscitation. Delaying resuscitation increased cumulative net fluid balances (2.1 +/- 0.5 mL/kg/hr, 2.8 +/- 0.7 mL/kg/hr, and 3.2 +/- 1.5 mL/kg/hr, respectively, for groups.T-6 hrs, Delta T-12 hrs, and.T-24 hrs; p < .01) and norepinephrine requirements during the 48-hr resuscitation protocol (0.02 +/- 0.04 mu g/kg/min, 0.06 +/- 0.09 mu g/kg/min, and 0.13 +/- 0.15 mu g/kg/min; p = .059), decreased maximal brain mitochondrial complex II respiration (p = .048), and tended to increase mortality (p = .08). Muscle tissue adenosine triphosphate decreased in all groups (p < .01), with lowest values at the end in groups Delta T-12 hrs and.T-24 hrs. Conclusions: Increasing the delay between sepsis initiation and resuscitation increases disease severity, need for resuscitation, and sepsis-associated brain mitochondrial dysfunction. Our results support the concept of a critical window of opportunity in sepsis resuscitation. (Crit Care Med 2012; 40:2841-2849)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sepsis and septic shock are associated with cardiac depression. Cardiovascular instability is a major cause of death in patients with sepsis. Focal adhesion kinase (FAK) is a potential mediator of cardiomyocyte responses to oxidative and mechanical stress. Myocardial collagen deposition can affect cardiac compliance and contractility. The aim of the present study was to determine whether the silencing of FAK is protective against endotoxemia-induced alterations of cardiac structure and function. In male Wistar rats, endotoxemia was induced by intraperitoneal injection of lipopolysaccharide (10 mg/kg). Cardiac morphometry and function were studied in vivo by left ventricular catheterization and histology. Intravenous injection of small interfering RNA targeting FAK was used to silence myocardial expression of the kinase. The hearts of lipopolysaccharide-injected rats showed collagen deposition, increased matrix metalloproteinase 2 activity, and myocyte hypertrophy, as well as reduced 24-h +dP/dt and -dP/dt, together with hypotension, increased left ventricular end-diastolic pressure, and elevated levels of FAK (phosphorylated and unphosphorylated). Focal adhesion kinase silencing reduced the expression and activation of the kinase in cardiac tissue, as well as protecting against the increased collagen deposition, greater matrix metalloproteinase 2 activity, and reduced cardiac contractility that occur during endotoxemia. In conclusion, FAK is activated in endotoxemia, playing a role in cardiac remodeling and in the impairment of cardiac function. This kinase represents a potential therapeutic target for the protection of cardiac function in patients with sepsis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context Lung-protective mechanical ventilation with the use of lower tidal volumes has been found to improve outcomes of patients with acute respiratory distress syndrome (ARDS). It has been suggested that use of lower tidal volumes also benefits patients who do not have ARDS. Objective To determine whether use of lower tidal volumes is associated with improved outcomes of patients receiving ventilation who do not have ARDS. Data Sources MEDLINE, CINAHL, Web of Science, and Cochrane Central Register of Controlled Trials up to August 2012. Study Selection Eligible studies evaluated use of lower vs higher tidal volumes in patients without ARDS at onset of mechanical ventilation and reported lung injury development, overall mortality, pulmonary infection, atelectasis, and biochemical alterations. Data Extraction Three reviewers extracted data on study characteristics, methods, and outcomes. Disagreement was resolved by consensus. Data Synthesis Twenty articles (2822 participants) were included. Meta-analysis using a fixed-effects model showed a decrease in lung injury development (risk ratio [RR], 0.33; 95% CI, 0.23 to 0.47; I-2, 0%; number needed to treat [NNT], 11), and mortality (RR, 0.64; 95% CI, 0.46 to 0.89; I-2, 0%; NNT, 23) in patients receiving ventilation with lower tidal volumes. The results of lung injury development were similar when stratified by the type of study (randomized vs nonrandomized) and were significant only in randomized trials for pulmonary infection and only in nonrandomized trials for mortality. Meta-analysis using a random-effects model showed, in protective ventilation groups, a lower incidence of pulmonary infection (RR, 0.45; 95% CI, 0.22 to 0.92; I-2, 32%; NNT, 26), lower mean (SD) hospital length of stay (6.91 [2.36] vs 8.87 [2.93] days, respectively; standardized mean difference [SMD], 0.51; 95% CI, 0.20 to 0.82; I-2, 75%), higher mean (SD) PaCO2 levels (41.05 [3.79] vs 37.90 [4.19] mm Hg, respectively; SMD, -0.51; 95% CI, -0.70 to -0.32; I-2, 54%), and lower mean (SD) pH values (7.37 [0.03] vs 7.40 [0.04], respectively; SMD, 1.16; 95% CI, 0.31 to 2.02; I-2, 96%) but similar mean (SD) ratios of PaO2 to fraction of inspired oxygen (304.40 [65.7] vs 312.97 [68.13], respectively; SMD, 0.11; 95% CI, -0.06 to 0.27; I-2, 60%). Tidal volume gradients between the 2 groups did not influence significantly the final results. Conclusions Among patients without ARDS, protective ventilation with lower tidal volumes was associated with better clinical outcomes. Some of the limitations of the meta-analysis were the mixed setting of mechanical ventilation (intensive care unit or operating room) and the duration of mechanical ventilation. JAMA. 2012;308(16):1651-1659 www.jama.com

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antioxidant activity and hepatoprotective properties of the aqueous extract and tetrahydrofuran-extracted phenolic fractions of Halimeda opuntia (Linnaeus) Lamouroux were investigated in rats with chemically induced liver injury. Total polyphenols were determined by using the Folin-Ciocalteau reagent. Liver damage was induced by CCl4 and assessed by a histological technique. Reverse transcription/polymerase chain reaction (RT/PCR) analysis showed increased superoxide dismutase (SOD) and catalase (CAT) gene expression and activities in the group treated with free phenolic acid (FPA) fractions of H. opuntia, suggesting inducing effects on both enzymes. In addition, rats treated with FPA fractions displayed lower liver thiobarbituric acid reactive substance (TBARS) levels than those observed for rats in the CCl4-treated group. These data suggest that the phenolic fractions from H. opuntia may protect the liver against oxidative stress-inducing effects of chemicals by modulating its antioxidant enzymes and oxidative status.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Life-threatening Plasmodium vivax malaria cases, while uncommon, have been reported since the early 20th century. Unfortunately, the pathogenesis of these severe vivax malaria cases is still poorly understood. In Brazil, the proportion of vivax malaria cases has been steadily increasing, as have the number of cases presenting serious clinical complications. The most frequent syndromes associated with severe vivax malaria in Brazil are severe anaemia and acute respiratory distress. Additionally, P. vivax infection may also result in complications associated with pregnancy. Here, we review the latest findings on severe vivax malaria in Brazil. We also discuss how the development of targeted field research infrastructure in Brazil is providing clinical and ex vivo experimental data that benefits local and international efforts to understand the pathogenesis of P. vivax. (C) 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.