21 resultados para Vórtices dos fluídos


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we considered the flow around two circular cylinders of equal diameter placed in tandem with respect to the incident uniform flow. The upstream cylinder was fixed and the downstream cylinder was completely free to move in the cross-stream direction, with no spring or damper attached to it. The centre-to-centre distance between the cylinders was four diameters, and the Reynolds number was varied from 100 to 645. We performed two- and three-dimensional simulations of this flow using a Spectral/hp element method to discretise the flow equations, coupled to a simple Newmark integration routine that solves the equation of the dynamics of the cylinder. The differences of the behaviours observed in the two- and three-dimensional simulations are highlighted and the data is analysed under the light of previously published experimental results obtained for higher Reynolds numbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computational fluid dynamics, CFD, is becoming an essential tool in the prediction of the hydrodynamic efforts and flow characteristics of underwater vehicles for manoeuvring studies. However, when applied to the manoeuvrability of autonomous underwater vehicles, AUVs, most studies have focused on the de- termination of static coefficients without considering the effects of the vehicle control surface deflection. This paper analyses the hydrodynamic efforts generated on an AUV considering the combined effects of the control surface deflection and the angle of attack using CFD software based on the Reynolds-averaged Navier–Stokes formulations. The CFD simulations are also independently conducted for the AUV bare hull and control surface to better identify their individual and interference efforts and to validate the simulations by comparing the experimental results obtained in a towing tank. Several simulations of the bare hull case were conducted to select the k –ω SST turbulent model with the viscosity approach that best predicts its hydrodynamic efforts. Mesh sensitivity analyses were conducted for all simulations. For the flow around the control surfaces, the CFD results were analysed according to two different methodologies, standard and nonlinear. The nonlinear regression methodology provides better results than the standard methodology does for predicting the stall at the control surface. The flow simulations have shown that the occurrence of the control surface stall depends on a linear relationship between the angle of attack and the control surface deflection. This type of information can be used in designing the vehicle’s autopilot system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lamellar systems composed of lipid bilayers have been widely used as model system for investigating properties of biological membranes, interactions between membranes and with biomolecules. The composition of the membrane determines its three dimensional shape and its properties such as rigidity and compressibility which play an important role on membrane fusion, protein adhesion, interactions between proteins, etc. We present a systematic study of a lamellar system composed of lecithin and a commercial co-surfactant (Simusol), which is a mixture of ethoxylated fatty acids. Using X ray scattering and a new procedure to fit X-ray experimental data, we determine relevant parameters characterizing the lamellar structure, varying membrane composition from 100% of lecithin to 100% of Simulsol. We present experimental data illustrating the swelling behavior for the membrane of different compositions and the respective behavior of the Caillé parameter. From and GISAXS experiments on oriented films under controlled humidity we investigate the compressibility of the lamellar phase and the effect of incorporating co-surfactant. Combining the Caillé parameter and compressibility studies we determine the bending rigidity of membranes. The results obtained with this experimental approach and new procedure to fit X-ray experimental allows us to identify structural changes in the bilayer depending both on hydration and co-surfactant content, with implications on elastic properties of membranes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hermite interpolation is increasingly showing to be a powerful numerical solution tool, as applied to different kinds of second order boundary value problems. In this work we present two Hermite finite element methods to solve viscous incompressible flows problems, in both two- and three-dimension space. In the two-dimensional case we use the Zienkiewicz triangle to represent the velocity field, and in the three-dimensional case an extension of this element to tetrahedra, still called a Zienkiewicz element. Taking as a model the Stokes system, the pressure is approximated with continuous functions, either piecewise linear or piecewise quadratic, according to the version of the Zienkiewicz element in use, that is, with either incomplete or complete cubics. The methods employ both the standard Galerkin or the Petrov–Galerkin formulation first proposed in Hughes et al. (1986) [18], based on the addition of a balance of force term. A priori error analyses point to optimal convergence rates for the PG approach, and for the Galerkin formulation too, at least in some particular cases. From the point of view of both accuracy and the global number of degrees of freedom, the new methods are shown to have a favorable cost-benefit ratio, as compared to velocity Lagrange finite elements of the same order, especially if the Galerkin approach is employed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A média global da variação na quantidade de calor armazenado nos oceanos observada recentemente é positiva (Cabanes et al., 2001; Cazenave & Nerem, 2004), porém, sua distribuição espacial não é homogênea (Polito & Sato, 2008). O calor armazenado está associado, via expansão térmica, à altura da coluna d'água. Portanto, variações espaciais na tendência do calor armazenado tem como consequência mudanças na inclinação da superfície que, por sua vez, implicam em variações nas correntes geostróficas e portanto na energia cinética associada a fenômenos de meso e larga escala. Polito & Sato (2008) observaram tendências predominantemente positivas na amplitude de ondas de Rossby e vórtices de mesoescala nos últimos 13 anos, sugerindo que estes eventos estão, em uma média global, ficando mais energéticos. Estas tendências variam regionalmente e a variabilidade espacial é mais pronunciada próximo da extensão para leste das correntes de contorno oeste (CCO), sugerindo um aumento do cisalhamento da velocidade geostrófica. O afastamento das CCO da costa provoca, na região de sua ocorrência, intensa atividade vortical e meandramento, constituindo, do ponto de vista da anomalia da altura da superfície do mar (AASM), as áreas mais energéticas do planeta. O exemplo no Atlântico Sul é a separação da Corrente do Brasil (CB) em sua região de encontro com a Corrente das Malvinas (CM). A CB flui quase-meridionalmente para sul até aproximadamente 36°S, iniciando seu afastamento da costa até 38°S devido ao encontro de suas águas quentes e salinas com as águas de origem subpolar da CM, conforme Garzoli & Garrafo (1989). Essa região recebe o nome de Confluência Brasil-Malvinas (CBM).