17 resultados para Tripodal organic-inorganic hybrids


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One hundred and twenty six piglets from a commercial genetic strain weaned at 21 days of age (6.11 +/- 0.42 kg) were used to evaluate the effects of supplementation levels of organic sources of trace minerals in the diets of weaned piglets on performance, occurrence of diarrhea, excretion of copper and zinc in the feces, and hematological parameters. A completely randomized block design was adopted, composed of six treatments (diets containing 100% of inorganic trace minerals premix at 3.00 kg/T; diets containing 0, 25, 50, 75 or 100% of organic trace minerals premix, equivalent to 0; 0.75; 1.50; 2.25 or 3.00 kg/T, respectively), seven replicates and three animals per plot. During the experimental period (from 21 to 63 days of age), the increasing levels of organic trace minerals premix in the diets determined a quadratic effect on daily weight gain (DWG), feed conversion (FC), percentage of hematocrit (Ht), hemoglobin (Hb), mean corpuscular hemoglobin (MCH), mean corpuscular volume (MCV), platelets (Pt), and a linear increase of Cu and Zn concentrations in feces. The comparison of means between the treatment with inorganic trace minerals premix and the other treatments showed that piglets fed diets without trace minerals premix had lower values of DWG, Ht, Hb, MCH, MCV, Pt and the worst FC value of piglets fed diets containing 25% of organic trace minerals premix presented lower values of Ht and Hb, in comparison with those fed diets with 100% of inorganic trace minerals premix. Inorganic trace minerals premix can be substituted by organic trace minerals premix at a lower level of inclusion in diets for weaned piglets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The addition of Cu2+ ions to the classical Fenton reaction (Fe2+ plus H2O2 at pH 3) is found to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15 % additional reduction of the total organic carbon (TOC), representing an overall improvement of the efficiency of the mineralization of phenol. Although Fe2+ exhibits a high initial rate of degradation, the degradation is not complete due to the formation of compounds refractory to the hydroxyl radical. The interference of copper ions on the degradation of phenol by the Fenton reaction was investigated. In the presence of Cu2+, the degradation is slower, but results in a greater reduction of TOC at the end of the reaction (t = 120 min). In the final stages of the reaction, when the Fe3+ in the solution is complexed in the form of ferrioxalate, the copper ions assume the role of the main catalyst of the degradation