22 resultados para Transitive Inferences
Resumo:
We studied the eutrophication history of a tropical shallow reservoir in the So Paulo metropolitan region, southeast Brazil. We analyzed grain size, geochemistry, diatom assemblages, and land-use records in a sediment core from the reservoir to infer its trophic state history during the last similar to 110 years (1894-2005). Eighty diatom species were observed in the core and shifts in the relative abundances of planktonic and benthic taxa indicate major limnological changes associated with complex interactions between hydrologic factors and eutrophication. Discostella stelligera was associated with deforestation and water physical changes whereas Aulacoseira granulata, a species abundant throughout the core, was mostly associated with high flux conditions and erosion events, regardless of trophic state. Eutrophication was triggered by construction of the city zoo (1958) and installation of the So Paulo State Department of Agriculture (1975) within the Gar double dagger as watershed, and increasing loads of untreated sewage from these institutions. The data suggest that deterioration in water quality began after similar to 1975 and markedly accelerated after similar to 1990. The reservoir has been hypereutrophic since 1999. Steady increases in geochemical proxies for trophic state, along with a decrease in C/N ratios, indicated higher nutrient concentrations and the prevalence of autochthonous production towards the core top. Appearance of Achnanthidium catenatum similar to 1993 highlighted the onset of a marked eutrophication phase. The subsequent dominance of Planothidium rostratum and Cyclotella meneghiniana suggested a sharp shift to a hypereutrophic state since 1999. Land-use history proved valuable for validating the chronology and interpreting anthropogenic impacts. Multi-proxy analysis of the sediment record provided an effective tool for tracking ecological shifts in the reservoir ecosystem. This study provides the first reconstruction of lake eutrophication history in Brazil and highlights the importance of hydrological/physical changes as drivers of diatom assemblage shifts in reservoirs, which may confound trophic state inferences based on shifts in the planktonic/benthic diatom ratio.
Resumo:
Renner AC, da Silva AAM, Rodriguez JDM, Simoes VMF, Barbieri MA, Bettiol H, Thomaz EBAF, Saraiva MC. Are mental health problems and depression associated with bruxism in children? Community Dent Oral Epidemiol 2011. (C) 2011 John Wiley & Sons A/S Abstract Objectives: Previous studies have found an association between bruxism and emotional and behavioral problems in children, but reported data are inconsistent. The objective of this study was to estimate the prevalence of bruxism, and of its components clenching and grinding, and its associations with mental problems and depression. Methods: Data from two Brazilian birth cohorts were analyzed: one from 869 children in Ribeirao Preto RP (Sao Paulo), a more developed city, and the other from 805 children in Sao Luis SL (Maranhao). Current bruxism evaluated by means of a questionnaire applied to the parents/persons responsible for the children was defined when the habit of tooth clenching during daytime and/or tooth grinding at night still persisted until the time of the assessment. Additionally, the lifetime prevalence of clenching during daytime only and grinding at night only was also evaluated. Mental health problems were investigated using the Strength and Difficulties Questionnaire (SDQ) and depression using the Childrens Depression Inventory (CDI). Analyses were carried out for each city: with the SDQ subscales (emotional symptoms, conduct problems, peer problems, attention/hyperactivity disorder), with the total score (sum of the subscales), and with the CDI. These analyses were performed considering different response variables: bruxism, clenching only, and grinding only. The risks were estimated using a Poisson regression model. Statistical inferences were based on 95% confidence intervals (95% CI). Results: There was a high prevalence of current bruxism: 28.7% in RP and 30.0% in SL. The prevalence of clenching was 20.3% in RP and 18.8% in SL, and grinding was found in 35.7% of the children in RP and 39.1% in SL. Multivariable analysis showed a significant association of bruxism with emotional symptoms and total SDQ score in both cities. When analyzed separately, teeth clenching was associated with emotional symptoms, peer problems, and total SDQ score; grinding was significantly associated with emotional symptoms and total SDQ score in RP and SL. Female sex appeared as a protective factor for bruxism, and for clenching and grinding in RP. Furthermore, maternal employment outside the home and white skin color of children were associated with increased prevalence of teeth clenching in SL. Conclusions: Mental health problems were associated with bruxism, with teeth clenching only and grinding at night only. No association was detected between depression and bruxism, neither clenching nor grinding. But it is necessary to be cautious regarding the inferences from some of our results.
Resumo:
mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Ayes). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0-10.9% with the differences occurring mainly between 51 and 225 nucleotides 3' of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Abstract Background Bat trypanosomes have been implicated in the evolutionary history of the T. cruzi clade, which comprises species from a wide geographic and host range in South America, Africa and Europe, including bat-restricted species and the generalist agents of human American trypanosomosis T. cruzi and T. rangeli. Methods Trypanosomes from bats (Rhinolophus landeri and Hipposideros caffer) captured in Mozambique, southeast Africa, were isolated by hemoculture. Barcoding was carried out through the V7V8 region of Small Subunit (SSU) rRNA and Fluorescent Fragment Length barcoding (FFLB). Phylogenetic inferences were based on SSU rRNA, glyceraldehyde phosphate dehydrogenase (gGAPDH) and Spliced Leader (SL) genes. Morphological characterization included light, scanning and transmission electron microscopy. Results New trypanosomes from bats clustered together forming a clade basal to a larger assemblage called the T. cruzi clade. Barcoding, phylogenetic analyses and genetic distances based on SSU rRNA and gGAPDH supported these trypanosomes as a new species, which we named Trypanosoma livingstonei n. sp. The large and highly polymorphic SL gene repeats of this species showed a copy of the 5S ribosomal RNA into the intergenic region. Unique morphological (large and broad blood trypomastigotes compatible to species of the subgenus Megatrypanum and cultures showing highly pleomorphic epimastigotes and long and slender trypomastigotes) and ultrastructural (cytostome and reservosomes) features and growth behaviour (when co-cultivated with HeLa cells at 37°C differentiated into trypomastigotes resembling the blood forms and do not invaded the cells) complemented the description of this species. Conclusion Phylogenetic inferences supported the hypothesis that Trypanosoma livingstonei n. sp. diverged from a common ancestral bat trypanosome that evolved exclusively in Chiroptera or switched at independent opportunities to mammals of several orders forming the clade T. cruzi, hence, providing further support for the bat seeding hypothesis to explain the origin of T. cruzi and T. rangeli.
Resumo:
Abstract Background Little is known about the diversity, phylogenetic relationships, and biogeography of trypanosomes infecting non-mammalian hosts. In this study, we investigated the influence of host species and biogeography on shaping the genetic diversity, phylogenetic relationship, and distribution of trypanosomes from South American alligatorids and African crocodilids. Methods Small Subunit rRNA (SSU rRNA) and glycosomal Glyceraldehyde Phosphate Dehydrogenase (gGAPDH) genes were employed for phylogenetic inferences. Trypanosomes from crocodilians were obtained by haemoculturing. Growth behaviour, morphology, and ultrastructural features complement the molecular description of two new species strongly supported by phylogenetic analyses. Results The inferred phylogenies disclosed a strongly supported crocodilian-restricted clade comprising three subclades. The subclade T. grayi comprised the African Trypanosoma grayi from Crocodylus niloticus and tsetse flies. The subclade T. ralphi comprised alligatorid trypanosomes represented by Trypanosoma ralphi n. sp. from Melanosuchus niger, Caiman crocodilus and Caiman yacare from Brazilian river basins. T. grayi and T. ralphi were sister subclades. The basal subclade T. terena comprised alligatorid trypanosomes represented by Trypanosoma terena n. sp. from Ca. yacare sharing hosts and basins with the distantly genetic related T. ralphi. This subclade also included the trypanosome from Ca. crocodilus from the Orinoco basin in Venezuela and, unexpectedly, a trypanosome from the African crocodilian Osteolaemus tetraspis. Conclusion The close relationship between South American and African trypanosomes is consistent with paleontological evidence of recent transoceanic dispersal of Crocodylus at the Miocene/Pliocene boundaries (4–5 mya), and host-switching of trypanosomes throughout the geological configuration of South American hydrographical basins shaping the evolutionary histories of the crocodilians and their trypanosomes.
Resumo:
Background: Little is known about the diversity, phylogenetic relationships, and biogeography of trypanosomes infecting non-mammalian hosts. In this study, we investigated the influence of host species and biogeography on shaping the genetic diversity, phylogenetic relationship, and distribution of trypanosomes from South American alligatorids and African crocodilids. Methods: Small Subunit rRNA (SSU rRNA) and glycosomal Glyceraldehyde Phosphate Dehydrogenase (gGAPDH) genes were employed for phylogenetic inferences. Trypanosomes from crocodilians were obtained by haemoculturing. Growth behaviour, morphology, and ultrastructural features complement the molecular description of two new species strongly supported by phylogenetic analyses. Results: The inferred phylogenies disclosed a strongly supported crocodilian-restricted clade comprising three subclades. The subclade T. grayi comprised the African Trypanosoma grayi from Crocodylus niloticus and tsetse flies. The subclade T. ralphi comprised alligatorid trypanosomes represented by Trypanosoma ralphi n. sp. From Melanosuchus niger, Caiman crocodilus and Caiman yacare from Brazilian river basins. T. grayi and T. ralphi were sister subclades. The basal subclade T. terena comprised alligatorid trypanosomes represented by Trypanosoma terena n. sp. from Ca. yacare sharing hosts and basins with the distantly genetic related T. ralphi. This subclade also included the trypanosome from Ca. crocodilus from the Orinoco basin in Venezuela and, unexpectedly, a trypanosome from the African crocodilian Osteolaemus tetraspis. Conclusion: The close relationship between South American and African trypanosomes is consistent with paleontological evidence of recent transoceanic dispersal of Crocodylus at the Miocene/Pliocene boundaries (4–5 mya), and host-switching of trypanosomes throughout the geological configuration of South American hydrographical basins shaping the evolutionary histories of the crocodilians and their trypanosomes.
Resumo:
BACKGROUND: Bat trypanosomes have been implicated in the evolutionary history of the T. cruzi clade, which comprises species from a wide geographic and host range in South America, Africa and Europe, including bat-restricted species and the generalist agents of human American trypanosomosis T. cruzi and T. rangeli. METHODS: Trypanosomes from bats (Rhinolophus landeri and Hipposideros caffer) captured in Mozambique, southeast Africa, were isolated by hemoculture. Barcoding was carried out through the V7V8 region of Small Subunit (SSU) rRNA and Fluorescent Fragment Length barcoding (FFLB). Phylogenetic inferences were based on SSU rRNA, glyceraldehyde phosphate dehydrogenase (gGAPDH) and Spliced Leader (SL) genes. Morphological characterization included light, scanning and transmission electron microscopy. RESULTS: New trypanosomes from bats clustered together forming a clade basal to a larger assemblage called the T. cruzi clade. Barcoding, phylogenetic analyses and genetic distances based on SSU rRNA and gGAPDH supported these trypanosomes as a new species, which we named Trypanosoma livingstonei n. sp. The large and highly polymorphic SL gene repeats of this species showed a copy of the 5S ribosomal RNA into the intergenic region. Unique morphological (large and broad blood trypomastigotes compatible to species of the subgenus Megatrypanum and cultures showing highly pleomorphic epimastigotes and long and slender trypomastigotes) and ultrastructural (cytostome and reservosomes) features and growth behaviour (when co-cultivated with HeLa cells at 37°C differentiated into trypomastigotes resembling the blood forms and do not invaded the cells) complemented the description of this species. CONCLUSION: Phylogenetic inferences supported the hypothesis that Trypanosoma livingstonei n. sp. diverged from a common ancestral bat trypanosome that evolved exclusively in Chiroptera or switched at independent opportunities to mammals of several orders forming the clade T. cruzi, hence, providing further support for the bat seeding hypothesis to explain the origin of T. cruzi and T. rangeli.