19 resultados para Titanium(IV) oxide modified silica


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The aim of this study was to assess the effect of nitrogen ion implantation on the flexibility of rotary nickel-titanium (NiTi) instruments as measured by the load required to bend implanted and nonimplanted instruments at a 30 degrees angle. Methods: Thirty K3 files, size #40, 0.02 taper and 25-mm length, were allocated into 2 groups as follows: group A, 15 files exposed to nitrogen ion implantation at a dose of 2.5 x 10(17) ions/cm(2), voltage 200 KeV, current density 1 mu A/cm(2), temperature 130 degrees C, and vacuum conditions of 10 x 10(-6) mm Hg for 6 hours; and group B, 15 nonimplanted files. One extra file was used for process control. All instruments were subjected to bend testing on a modified troptometer, with measurement of the load required for flexure to an angle of 30 degrees. The Mann-Whitney U test was used for statistical analysis. Findings with P <.05 were considered significant. Results: The mean load required to bend instruments at a 30 degrees angle was 376.26 g for implanted instruments and 383.78 g for nonimplanted instruments. The difference was not statistically significant. Conclusions: Our findings show that nitrogen ion implantation has no appreciable effect on the flexibility of NiTi instruments. (J Endod 2012;38:673-675)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative study using different proportions of CeO2/C (4%, 9% and 13% CeO2) was performed to produce H2O2, a reagent used in the oxidation of organic pollutants and in electro-Fenton reactions for the production of the hydroxyl radical (OH center dot), a strong oxidant agent used in the electrochemical treatment of aqueous wastewater. The CeO2/C materials were prepared by a modified polymeric precursor method (PPM). X-ray diffraction analysis of the CeO2/C prepared by the PPM identified two phases. CeO2 and CeO2. The average size of the crystallites in these materials was close to 7 nm. The kinetics of the oxygen reduction reaction (ORR) were evaluated by the rotating ring-disk electrode technique. The results showed that the 4% CeO2/C prepared by the PPM was the best composite for the production of H2O2 in a 1 mol L-1 NaOH electrolyte solution. For this material, the number of electrons transferred and the H2O2 percentage efficiency were 3.1 and 44%, respectively. The ring-current of the 4% CeO2/C was higher than that of Vulcan carbon, the reference material for H2O2 production, which produced 41% H2O2 and transferred 3.1 electrons per molecule of oxygen. The overpotential for this reaction on the ceria-based catalyst was substantially lower (approximately 200 mV), demonstrating the higher catalytic performance of this material. Gas diffusion electrodes (GDE) containing the catalyst were used to evaluate the real amount of H2O2 produced during exhaustive electrolysis. The 4% CeO2/C GDE produced 871 mg L-1 of H2O2, whereas the Vulcan carbon GDE produced a maximum amount of only 407 mg L-1. Thus, the 4% CeO2/C electrocatalyst prepared by the PPM is a promising material for H2O2 electrogeneration in alkaline media. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presented herein is the design of a dinuclear Ni-II synthetic hydrolase [Ni-2(HBPPAMFF)(mu-OAc)(2)(H2O)]-BPh4 (1) (H(2)BPPAMFF = 2-[(N-benzyl-N-2-pyridylmethylamine)]-4-methyl-6-[N-(2-pyridylmethyl)aminomethyl)])-4- methyl-6-formylphenol) to be covalently attached to silica surfaces, while maintaining its catalytic activity. An aldehyde-containing ligand (H(2)BPPAMFF) provides a reactive functional group that can serve as a cross-linking group to bind the complex to an organoalkoxysilane and later to the silica surfaces or directly to amino-modified surfaces. The dinuclear Ni-II complex covalently attached to the silica surfaces was fully characterized by different techniques. The catalytic turnover number (k(cat)) of the immobilized (NiNiII)-Ni-II catalyst in the hydrolysis of 2,4-bis(dinitrophenyl)phosphate is comparable to the homogeneous reaction; however, the catalyst interaction with the support enhanced the substrate to complex association constant, and consequently, the catalytic efficiency (E - k(cat)/K-M) and the supported catalyst can be reused for subsequent diester hydrolysis reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caffeic acid is an ortho-phenol found in vegetable tissues presenting important properties such as carcinogenesis inhibitor, anti-oxidant, anti-viral, anti-inflammatory and anti-rheumatic actions. It was observed that caffeic acid was not degraded in daylight during the adsorption on TiO2 at pH 4.8. The adsorption fit very well to a Brunauer-Emmett-Teller isotherm equation with a monolayer coverage of 68.15 mg(CA) g(TiO2)(-1) and saturation coverage of 195.4 mg(CA) g(TiO2)(-1). A strong adsorption of caffeic acid was verified on TiO2 for the dry solid obtained from the mixture. The Raman and IR spectroscopies revealed that the adsorption should occur through the interaction of the diphenol oxygens with contribution of CC double bond of the acrylic group, however, the carboxylic acid group did not have participation in the adsorption. (C) 2012 Elsevier B.V. All rights reserved.