20 resultados para TRICHODERMA
Resumo:
Aspergillus fumigatus is a major opportunistic pathogen and allergen of mammals. Nutrient sensing and acquisition mechanisms, as well as the capability to cope with different stressing conditions, are essential for A. fumigatus virulence and survival in the mammalian host. This study characterized the A. fumigatus SebA transcription factor, which is the putative homologue of the factor encoded by Trichoderma atroviride seb1. The Delta sebA mutant demonstrated reduced growth in the presence of paraquat, hydrogen peroxide, CaCl2, and poor nutritional conditions, while viability associated with sebA was also affected by heat shock exposure. Accordingly, SebA:GFP (SebA:green fluorescent protein) was shown to accumulate in the nucleus upon exposure to oxidative stress and heat shock conditions. In addition, genes involved in either the oxidative stress or heat shock response had reduced transcription in the Delta sebA mutant. The A. fumigatus Delta sebA strain was attenuated in virulence in a murine model of invasive pulmonary aspergillosis. Furthermore, killing of the Delta sebA mutant by murine alveolar macrophages was increased compared to killing of the wild-type strain. A. fumigatus SebA plays a complex role, contributing to several stress tolerance pathways and growth under poor nutritional conditions, and seems to be integrated into different stress responses.
Resumo:
In this paper, we present the results of an experimental approach developed to study the macroscopic and microbiological alteration of bird and small mammal bones buried under a Cerrado biome. The first experiment evaluated the macroscopic alteration of cooked and fresh carcasses buried through the dry and rainy seasons. The second experiment analyzed the mycobiota associated to the decomposition of a complete bird that remained buried for almost a year. Results show that in tropical forest environments: 1) bone structure and pre-taphonomic factors determine its differential alteration by biochemical processes; 2) fungal populations associated to the decomposition of animal remains depend on soil chemistry and ecological dynamics; 3) even in a corrosive environment, bird bones are more capable of surviving to several mycological decomposition steps. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Background There is an imperative necessity for alternative sources of energy able to reduce the world dependence of fossil oil. One of the most successful options is ethanol obtained mainly from sugarcane and corn fermentation. The foremost residue from sugarcane industry is the bagasse, a rich lignocellulosic raw material uses for the production of ethanol second generation (2G). New cellulolytic and hemicellulytic enzymes are needed, in order to optimize the degradation of bagasse and production of ethanol 2G. Results The ability to produce hemicellulases and related enzymes, suitable for lignocellulosic biomass deconstruction, was explored using 110 endophytic fungi and 9 fungi isolated from spoiled books in Brazil. Two initial selections were performed, one employing the esculin gel diffusion assay, and the other by culturing on agar plate media with beechwood xylan and liquor from the hydrothermal pretreatment of sugar cane bagasse. A total of 56 isolates were then grown at 29°C on steam-exploded delignified sugar cane bagasse (DEB) plus soybean bran (SB) (3:1), with measurement of the xylanase, pectinase, β-glucosidase, CMCase, and FPase activities. Twelve strains were selected, and their enzyme extracts were assessed using different substrates. Finally, the best six strains were grown under xylan and pectin, and several glycohydrolases activities were also assessed. These strains were identified morphologically and by sequencing the internal transcribed spacer (ITS) regions and the partial β-tubulin gene (BT2). The best six strains were identified as Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49. These strains produced glycohydrolases with different profiles, and production was highly influenced by the carbon sources in the media. Conclusions The selected endophytic fungi Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49 are excellent producers of hydrolytic enzymes to be used as part of blends to decompose sugarcane biomass at industrial level.
Resumo:
Sporotrichosis is a subcutaneous mycosis and is also a zoonosis (sapro- and anthropozoonosis). The objective of the present study was to determine the occurrence of sporotrichosis in domestic cats and in wild or exotic felines in captivity through the isolation of Sporothrix spp. from claw impressions in a culture medium. The samples included 132 felines, of which 120 (91.0 %) were domestic cats, 11 (8.3 %) were wild felines, and one (0.7 %) was an exotic felid. Twenty-one (17.5 %) were outdoor cats. Of the total, 89 (67.4 %) had contact with other animals of the same species. It was possible to isolate Sporothrix schenckii from the claws of one (0.7 %) of the felids probed; this animal exhibited generalised sporotrichosis and had infected a female veterinarian. The potential pathogenic agents Microsporum canis and Malassezia pachydermatis were isolated in 12.1 and 5.3 % of the animals, respectively. The following anemophilous fungi, which were considered to be contaminants, were also isolated: Penicillium sp. (28 or 21.2 %), Aspergillus sp. (13 or 9.8 %), Rhodotorula sp. (5 or 3.8 %), Candida sp. (5 or 3.8 %), Trichoderma sp. (1 or 0.7 %), and Acremonium sp. (1 or 0.7 %). Due to the low magnitude of occurrence (0.7 %) of Sporothrix in feline claws, the potential of the cats evaluated in this study to be sources of infection in the city of São Paulo is considerably low.
Resumo:
Abstract BACKGROUND: There is an imperative necessity for alternative sources of energy able to reduce the world dependence of fossil oil. One of the most successful options is ethanol obtained mainly from sugarcane and corn fermentation. The foremost residue from sugarcane industry is the bagasse, a rich lignocellulosic raw material uses for the production of ethanol second generation (2G). New cellulolytic and hemicellulytic enzymes are needed, in order to optimize the degradation of bagasse and production of ethanol 2G. RESULTS: The ability to produce hemicellulases and related enzymes, suitable for lignocellulosic biomass deconstruction, was explored using 110 endophytic fungi and 9 fungi isolated from spoiled books in Brazil. Two initial selections were performed, one employing the esculin gel diffusion assay, and the other by culturing on agar plate media with beechwood xylan and liquor from the hydrothermal pretreatment of sugar cane bagasse. A total of 56 isolates were then grown at 29°C on steam-exploded delignified sugar cane bagasse (DEB) plus soybean bran (SB) (3:1), with measurement of the xylanase, pectinase, β-glucosidase, CMCase, and FPase activities. Twelve strains were selected, and their enzyme extracts were assessed using different substrates. Finally, the best six strains were grown under xylan and pectin, and several glycohydrolases activities were also assessed. These strains were identified morphologically and by sequencing the internal transcribed spacer (ITS) regions and the partial β-tubulin gene (BT2). The best six strains were identified as Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49. These strains produced glycohydrolases with different profiles, and production was highly influenced by the carbon sources in the media. CONCLUSIONS: The selected endophytic fungi Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49 are excellent producers of hydrolytic enzymes to be used as part of blends to decompose sugarcane biomass at industrial level.