19 resultados para TIME-DOMAIN TECHNIQUE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Carr-Purcell pulse sequence, with low refocusing flip angle, produces echoes midway between refocusing pulses that decay to a minimum value dependent on T*(2). When the refocusing flip angle was pi/2 (CP90) and tau > T*(2), the signal after the minimum value, increased to reach a steady-state free precession regime (SSFP), composed of a free induction decay signal after each pulse and an echo, before the next pulse. When tau < T*(2), the signal increased from the minimum value to the steady-state regime with a time constant (T*) = 2T(1)T(2)/(T-1 + T-2). identical to the time constant observed in the SSFP sequence, known as the continuous wave free precession (CWFP). The steady-state amplitude obtained with M-cp90 = M0T2/(T-1+T-2) was identical to CWFP. Therefore, this sequence was named CP-CWFP because it is a Carr-Purcell sequence that produces results similar to the CWFP. However, CP-CWFP is a better sequence for measuring the longitudinal and transverse relaxation times in single scan, when the sample exhibits T-1 similar to T-2. Therefore, this sequence can be a useful method in time domain NMR and can be widely used in the agriculture, food and petrochemical industries because those samples tend to have similar relaxation times in low magnetic fields. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nuclear magnetic resonance (NMR) is one of the most versatile analytical techniques for chemical, biochemical and medical applications. Despite this great success, NMR is seldom used as a tool in industrial applications. The first application of NMR in flowing samples was published in 1951. However, only in the last ten years Flow NMR has gained momentum and new and potential applications have been proposed. In this review we present the historical evolution of flow or online NMR spectroscopy and imaging, and current developments for use in the automation of industrial processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study compared the effectiveness of the multifocal visual evoked cortical potentials (mfVEP) elicited by pattern pulse stimulation with that of pattern reversal in producing reliable responses (signal-to-noise ratio >1.359). Participants were 14 healthy subjects. Visual stimulation was obtained using a 60-sector dartboard display consisting of 6 concentric rings presented in either pulse or reversal mode. Each sector, consisting of 16 checks at 99% Michelson contrast and 80 cd/m² mean luminance, was controlled by a binary m-sequence in the time domain. The signal-to-noise ratio was generally larger in the pattern reversal than in the pattern pulse mode. The number of reliable responses was similar in the central sectors for the two stimulation modes. At the periphery, pattern reversal showed a larger number of reliable responses. Pattern pulse stimuli performed similarly to pattern reversal stimuli to generate reliable waveforms in R1 and R2. The advantage of using both protocols to study mfVEP responses is their complementarity: in some patients, reliable waveforms in specific sectors may be obtained with only one of the two methods. The joint analysis of pattern reversal and pattern pulse stimuli increased the rate of reliability for central sectors by 7.14% in R1, 5.35% in R2, 4.76% in R3, 3.57% in R4, 2.97% in R5, and 1.78% in R6. From R1 to R4 the reliability to generate mfVEPs was above 70% when using both protocols. Thus, for a very high reliability and thorough examination of visual performance, it is recommended to use both stimulation protocols.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the results of research aiming to develop partial discharge detection techniques in high voltage equipment, at substation environment. Measurements of high frequency components of leakage current, at equipments' grounding conductor, were performed. This procedure was performed with the equipment energized and without disconnecting it from the system. The partial discharge generated current pulse is picked up by a high frequency CT, and is detected by an oscilloscope. The partial discharge identification was made considering previously obtained laboratory results, where partial discharges were characterized by means of its time domain signatures. This paper focuses measurements in SF6 circuit breakers. Encouraging results were obtained, showing the feasibility of detecting partial discharges in energized equipment in the laboratory and in the field, in a substation environment, using this method.