24 resultados para Symmetry-Breaking


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Josephson junction model is applied to the experimental implementation of classical bifurcation in a quadrupolar nuclear magnetic resonance system. There are two regimes, one linear and one nonlinear, which are implemented by the radio-frequency and the quadrupolar terms of the Hamiltonian of a spin system, respectively. These terms provide an explanation of the symmetry breaking due to bifurcation. Bifurcation depends on the coexistence of both regimes at the same time in different proportions. The experiment is performed on a lyotropic liquid crystal sample of an ordered ensemble of 133Cs nuclei with spin I = 7/2 at room temperature. Our experimental results confirm that bifurcation happens independently of the spin value and of the physical system. With this experimental spin scenario, we confirm that a quadrupolar nuclei system could be described analogously to a symmetric two-mode Bose-Einstein condensate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present experiment investigated whether pigeons can show associative symmetry on a two-alternative matching to-sample procedure The procedure consisted of a within subject sequence of training and testing with reinforcement and It provided (a) exemplars of symmetrical responding and (b) all prerequisite discriminations among test samples and comparisons After pigeons had learned two arbitrary matching tasks (A B and C D) they were given a reinforced symmetry test for half of the baseline relations (B1-A1 and D1-C1) To control for the effects of reinforcement during testing two novel nonsymmetrical responses were concurrently reinforced using the other baseline stimuli (D2-A2 and B2-C2) Pigeons matched at chance on both types of relations thus indicating no evidence for symmetry These symmetrical and nonsymmetrical relations were then directly trained in order to provide exemplars of symmetry and all prerequisite discriminations for a second test The symmetrical test relations were now B2-A2 and D2-C2 and the nonsymmetrical relations were D1-A1 and B1-C1 On this test 1 pigeon showed clear evidence of symmetry 2 pigeons showed weak evidence and 1 pigeon showed no evidence The previous training of all prerequisite discriminations among stimuli and the within subject control for testing with reinforcement seem to have set favorable conditions for the emergence of symmetry in nonhumans However the variability across subjects shows that methodological variables still remain to be controlled

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To investigate the facial symmetry of high and low dose methotrexate (MTX) treated rats submitted to experimentally displaced mandibular condyle fracture through the recording of cephalometric measurements. METHODS: One hundred male Wistar rats underwent surgery using an experimental model of right condylar fracture. Animals were divided into four groups: A - saline solution (1mL/week); B - dexamethasone (DEX) (0,15mg/Kg); C - MTX low dose (3 mg/Kg/week); D - MTX high dose (30 mg/Kg). Animals were sacrificed at 1, 7, 15, 30 and 90 days postoperatively (n=5). Body weight was recorded. Specimens were submitted to axial radiographic incidence, and cephalometric mensurations were made using a computer system. Linear measurements of skull and mandible, as well as angular measurements of mandibular deviation were taken. Data were subjected to statistical analyses among the groups, periods of sacrifice and between the sides in each group (alpha=0.05). RESULTS: Animals regained body weight over time, except in group D. There was reduction in the mandibular length and also changes in the maxilla as well as progressive deviation in the mandible in relation to the skull basis in group D. CONCLUSION: Treatment with high dose methotrexate had deleterious effect on facial symmetry of rats submitted to experimentally displaced condylar process fracture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excited states of the N = Z = 33 nucleus As-66 have been populated in a fusion-evaporation reaction and studied using gamma-ray spectroscopic techniques. Special emphasis was put into the search for candidates for the T = 1 states. A new 3(+) isomer has been observed with a lifetime of 1.1(3) ns. This is believed to be the predicted oblate shape isomer. The excited levels are discussed in terms of the shell model and of the complex excited Vampir approaches. Coulomb energy differences are determined from the comparison of the T = 1 states with their analog partners. The unusual behavior of the Coulomb energy differences in the A = 70 mass region is explained through different shape components (oblate and prolate) within the members of the same isospin multiplets. This breaking of the isospin symmetry is attributed to the correlations induced by the Coulomb interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a family of networks whose local interconnection topologies are generated by the root vectors of a semi-simple complex Lie algebra. Cartan classification theorem of those algebras ensures those families of interconnection topologies to be exhaustive. The global arrangement of the network is defined in terms of integer or half-integer weight lattices. The mesh or torus topologies that network millions of processing cores, such as those in the IBM BlueGene series, are the simplest member of that category. The symmetries of the root systems of an algebra, manifested by their Weyl group, lends great convenience for the design and analysis of hardware architecture, algorithms and programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the radial expansion of cylindrical tubes in a hot QGP. These tubes are treated as perturbations in the energy density of the system which is formed in heavy ion collisions at RHIC and LHC. We start from the equations of relativistic hydrodynamics in two spatial dimensions and cylindrical symmetry and perform an expansion of these equations in a small parameter, conserving the nonlinearity of the hydrodynamical formalism. We consider both ideal and viscous fluids and the latter are studied with a relativistic Navier-Stokes equation. We use the equation of state of the MIT bag model. In the case of ideal fluids we obtain a breaking wave equation for the energy density fluctuation, which is then solved numerically. We also show that, under certain assumptions, perturbations in a relativistic viscous fluid are governed by the Burgers equation. We estimate the typical expansion time of the tubes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how magnetic materials respond to rapidly varying magnetic fields, as in dynamic hysteresis loops, constitutes a complex and physically interesting problem. But in order to accomplish a thorough investigation, one must necessarily consider the effects of thermal fluctuations. Albeit being present in all real systems, these are seldom included in numerical studies. The notable exceptions are the Ising systems, which have been extensively studied in the past, but describe only one of the many mechanisms of magnetization reversal known to occur. In this paper we employ the Stochastic Landau-Lifshitz formalism to study high-frequency hysteresis loops of single-domain particles with uniaxial anisotropy at an arbitrary temperature. We show that in certain conditions the magnetic response may become predominantly out-of-phase and the loops may undergo a dynamic symmetry loss. This is found to be a direct consequence of the competing responses due to the thermal fluctuations and the gyroscopic motion of the magnetization. We have also found the magnetic behavior to be exceedingly sensitive to temperature variations, not only within the superparamagnetic-ferromagnetic transition range usually considered, but specially at even lower temperatures, where the bulk of interesting phenomena is seen to take place. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state (EoS) of the MCFL phase is self-consistently determined. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactions initiated by collisions with low-energy secondary electrons has been found to be the prominent mechanism toward the radiation damage on living tissues through DNA strand breaks. Now it is widely accepted that during the interaction with these secondary species the selective breaking of chemical bonds is triggered by dissociative electron attachment (DEA), that is, the capture of the incident electron and the formation of temporary negative ion states [1,2,3]. One of the approaches largely used toward a deeper understanding of the radiation damage to DNA is through modeling of DEA with its basic constituents (nucleotide bases, sugar and other subunits). We have tried to simplify this approach and attempt to make it comprehensible at a more fundamental level by looking at even simple molecules. Studies involving organic systems such as carboxylic acids, alcohols and simple ¯ve-membered heterocyclic compounds are taken as starting points for these understanding. In the present study we investigate the role played by elastic scattering and electronic excitation of molecules on electron-driven chemical processes. Special attention is focused on the analysis of the in°uence of polarization and multichannel coupling e®ects on the magnitude of elastic and electronically inelastic cross-sections. Our aim is also to investigate the existence of resonances in the elastic and electronically inelastic channels as well as to characterize them with respect to its type (shape, core-excited or Feshbach), symmetry and position. The relevance of these issues is evaluated within the context of possible applications for the modeling of discharge environments and implications in the understanding of mutagenic rupture of DNA chains. The scattering calculations were carried out with the Schwinger multichannel method (SMC) [4] and its implementation with pseudopotentials (SMCPP) [5] at di®erent levels of approximation for impact energies ranging from 0.5 eV to 30 eV. References [1] B. Boudai®a, P. Cloutier, D. Hunting, M. A. Huels and L. Sanche, Science 287, 1658 (2000). [2] X. Pan, P. Cloutier, D. Hunting and L. Sanche, Phys. Rev. Lett. 90, 208102 (2003). [3] F. Martin, P. D. Burrow, Z. Cai, P. Cloutier, D. Hunting and L. Sanche, Phys. Rev. Lett. 93, 068101 (2004). [4] K. Takatsuka and V. McKoy, Phys. Rev. A 24, 2437 (1981); ibid. Phys. Rev. A 30, 1734 (1984). [5] M. H. F. Bettega, L. G. Ferreira and M. A. P. Lima, Phys. Rev. A 47, 1111 (1993).