26 resultados para Steam sterilization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed at enumerating molds (heat-labile and heat-resistant) on the surface of paperboard material to be filled with tomato pulps through an aseptic system and at determining the most heat-and hydrogen peroxide-resistant strains. A total of 118 samples of laminated paperboard before filling were collected, being 68 before and 50 after the hydrogen peroxide bath. Seven molds, including heat-resistant strains (Penicillium variotii and Talaromyces flavus) with counts ranging between 0.71 and 1.02 CFU/cm(2) were isolated. P. variotii was more resistant to hydrogen peroxide than T. flavus and was inactivated after heating at 85 degrees C/15 min. When exposed to 35 % hydrogen peroxide at 25 degrees C, T. flavus (F5E2) and N. fischeri (control) were less resistant than P. variotti (F1A1). P. citrinum (F7E2) was shown to be as resistant as P. variotti. The D values (the time to cause one logarithmic cycle reduction in a microbial population at a determined temperature) for spores of P. variotii (F1A1) and N. fischeri (control) with 4 months of age at 85 and 90 degrees C were 3.9 and 4.5 min, respectively. Although the contamination of packages was low, the presence of heat-and chemical-resistant molds may be of concern for package sterility and product stability during shelf-life. To our knowledge, this is the first report that focuses on the isolation of molds, including heat-resistant ones, contaminating paperboard packaging material and on estimating their resistance to the chemical and physical processes used for packaging sterilization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agroindustrial residues are materials often rich in cellulose and hemicellulose. The use of these substrates for the microbial production of enzymes of industrial interest is mainly due to their high availability associated with their low cost. In this work, corncob (CCs) particles decomposed to soluble compounds (liquor) were incorporated in the microbial growth medium through autohydrolysis, as a strategy to increase and undervalue xylanase and beta-xylosidase production by Aspergillus terricola and Aspergillus ochraceus. The CCs autohydrolysis liquor produced at 200 A degrees C for 5, 15, 30 or 50 min was used as the sole carbon source or associated with untreated CC. The best condition for enzyme synthesis was observed with CCs submitted to 30 min of autohydrolysis. The enzymatic production with untreated CCs plus CC liquor was higher than with birchwood xylan for both microorganisms. A. terricola produced 750 total U of xylanase (144 h cultivation) and 30 total U of beta-xylosidase (96-168 h) with 0.75% untreated CCs and 6% CCs liquor, against 650 total U of xylanase and 2 total U of beta-xylosidase in xylan; A. ochraceus produced 605 total U of xylanase and 56 total U of beta-xylosidase (168 h cultivation) with 1% untreated CCs and 10% CCs liquor against 400 total U of xylanase and 38 total U of beta-xylosidase in xylan. These results indicate that the treatment of agroindustrial wastes through autohydrolysis can be a viable strategy in the production of high levels of xylanolytic enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effectiveness of photodynamic therapy (PDT) for the disinfection of complete dentures. Biofilm samples were collected from dentures of 60 denture users who were randomly divided into four experimental groups (n = 15 each): subjects whose maxillary dentures were sprayed with 50 and 100 mg/l of PhotogemA (R) suspension (groups P50S and P100S) and patients whose maxillary dentures were treated with 50 and 100 mg/l of PhotogemA (R) gel (groups P50G and P100G). Dentures with photosensitizers were left in the dark for 30 min (pre-irradiation time) and then irradiated with blue LED light at 37.5 J/cm(2) (26 min). Denture samples were taken with sterile cotton swab before (left side surfaces) and after (right side surfaces) PDT. All microbial material was diluted and plated on selective media for Candida spp., Staphylococcus mutans spp., streptococci and a non-selective media. After incubation (48 h/37A degrees C), the number of colony-forming units (cfu/ml) was counted. Microorganisms grown on selective media were identified using biochemical methods before and after PDT. The data were submitted to McNemar and Kruskal-Wallis tests (alpha = 0.05). No growth after PDT was observed in 60, 53, 47, and 40% of dentures from P100G, P50G, P100S, and P50S groups, respectively. When evidence of microorganisms' growth was observed, PDT regimens eliminated over 90% of microorganisms on dentures. This clinical study showed that PDT was effective for disinfecting dentures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nanocomposite based on bacterial cellulose (BC) and type I collagen (COL) was evaluated for in vitro bone regeneration. BC membranes were modified by glycine esterification followed by cross-linking of type I collagen employing 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. Collagen incorporation was studied by spectroscopy analysis. X-Ray diffraction showed changes in the BC crystallinity after collagen incorporation. The elastic modulus and tensile strength for BC-COL decreased, while the strain at failure showed a slight increase, even after sterilization, as compared to pristine BC. Swelling tests and contact angle measurements were also performed. Cell culture experiments performed with osteogenic cells were obtained by enzymatic digestion of newborn rat calvarium revealed similar features of cell morphology for cultures grown on both membranes. Cell viability/proliferation was not different between BC and BC-COL membranes at day 10 and 14. The high total protein content and ALP activity at day 17 in cells cultured on BC-COL indicate that this composite allowed the development of the osteoblastic phenotype in vitro. Thus, BC-COL should be considered as alternative biomaterial for bone tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Patients under haemodialysis are considered at high risk to acquire hepatitis B virus (HBV) infection. Since few data are reported from Brazil, our aim was to assess the frequency and risk factors for HBV infection in haemodialysis patients from 22 Dialysis Centres from Santa Catarina State, south of Brazil. Methods This study includes 813 patients, 149 haemodialysis workers and 772 healthy controls matched by sex and age. Serum samples were assayed for HBV markers and viraemia was detected by nested PCR. HBV was genotyped by partial S gene sequencing. Univariate and multivariate statistical analyses with stepwise logistic regression analysis were carried out to analyse the relationship between HBV infection and the characteristics of patients and their Dialysis Units. Results Frequency of HBV infection was 10.0%, 2.7% and 2.7% among patients, haemodialysis workers and controls, respectively. Amidst patients, the most frequent HBV genotypes were A (30.6%), D (57.1%) and F (12.2%). Univariate analysis showed association between HBV infection and total time in haemodialysis, type of dialysis equipment, hygiene and sterilization of equipment, number of times reusing the dialysis lines and filters, number of patients per care-worker and current HCV infection. The logistic regression model showed that total time in haemodialysis, number of times of reusing the dialysis lines and filters, and number of patients per worker were significantly related to HBV infection. Conclusions Frequency of HBV infection among haemodialysis patients at Santa Catarina state is very high. The most frequent HBV genotypes were A, D and F. The risk for a patient to become HBV positive increase 1.47 times each month of haemodialysis; 1.96 times if the dialysis unit reuses the lines and filters ≥ 10 times compared with haemodialysis units which reuse < 10 times; 3.42 times if the number of patients per worker is more than five. Sequence similarity among the HBV S gene from isolates of different patients pointed out to nosocomial transmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last two decades, morbidity and mortality from malaria and dengue fever among other pathogens are an increasing Public Health problem. The increase in the geographic distribution of vectors is accompanied by the emergence of viruses and diseases in new areas. There are insufficient specific therapeutic drugs available and there are no reliable vaccines for malaria or dengue, although some progress has been achieved, there is still a long way between its development and actual field use. Most mosquito control measures have failed to achieve their goals, mostly because of the mosquito's great reproductive capacity and genomic flexibility. Chemical control is increasingly restricted due to potential human toxicity, mortality in no target organisms, insecticide resistance, and other environmental impacts. Other strategies for mosquito control are desperately needed. The Sterile Insect Technique (SIT) is a species-specific and environmentally benign method for insect population suppression, it is based on mass rearing, radiation mediated sterilization, and release of a large number of male insects. Releasing of Insects carrying a dominant lethal gene (RIDL) offers a solution to many of the drawbacks of traditional SIT that have limited its application in mosquitoes while maintaining its environmentally friendly and species-specific utility. The self-limiting nature of sterile mosquitoes tends to make the issues related to field use of these somewhat less challenging than for self-spreading systems characteristic of population replacement strategies. They also are closer to field use, so might be appropriate to consider first. The prospect of genetic control methods against mosquito vectored human diseases is rapidly becoming a reality, many decisions will need to be made on a national, regional and international level regarding the biosafety, social, cultural and ethical aspects of the use and deployment of these vector control methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste estudo foi avaliar o crescimento microbiano em sondas para vitrectomia de uso único, reprocessadas na prática assistencial. Foram investigadas nove sondas reusadas e reprocessadas por diferentes métodos. As sondas foram segmentadas, individualmente, em porções de 3,5 cm, totalizando em 979 unidades amostrais (extensões, conectores e ponteiras) inoculadas em meio de cultura e incubadas a 37ºC, por 14 dias. Os resultados mostraram crescimento microbiano em 57 (5,8%) unidades amostrais, das quais, 25 foram esterilizadas por Óxido de Etileno, 16 por Plasma de Peróxido de Hidrogênio e 16 por Vapor à Baixa Temperatura e Formaldeído. Foram identificadas 17 espécies microbianas, sendo as mais prevalentes o Micrococcus spp., Staphylococcus coagulase negativa, Pseudomonas spp. e Bacillus subtilis. O reuso de sondas de uso único para vitrectomia não se mostrou seguro, portanto tal prática não é recomendada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

São diversificadas as recomendações referentes à temperatura (T°) e umidade relativa do ar (UR) no armazenamento de materiais esterilizados em Centrais de Material e Esterilização (CME), sem que essas recomendações estejam embasadas em referenciais teóricos ou experimentos. A prática mostra dificuldades em controlar esses parâmetros, suscitando dúvidas quanto ao risco para a manutenção da esterilidade dos materiais. Este artigo propôs, por meio de uma revisão bibliográfica integrativa, identificar e analisar as recomendações referentes à T° e UR indicadas para o setor de guarda dos materiais na CME. Não foi encontrada literatura que justifique tais recomendações. Foram incluídas sete publicações que analisaram as variáveis T° e UR da área de armazenagem como fatores que podem afetar a manutenção do material esterilizado, e apresentaram resultados contraditórios quanto à interferência desses fatores na manutenção da esterilidade dos materiais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The catalytic performance of Ni/ZrO2 catalysts loaded with different lanthanum content for steam reforming of ethanol was investigated. Catalysts were characterized by BET surface area, X-ray diffraction, UV-vis spectroscopy, temperature programmed reduction, and X-ray absorption fine structure techniques. Results showed that lanthanum addition led to an increase in the degree of reduction of both NiO and nickel surface species interacting with the support, due to the higher dispersion effect. The best catalytic performance at 450 ºC was found for the Ni/12LZ catalyst, which exhibited an effluent gaseous mixture with the highest H2 yield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background There is an imperative necessity for alternative sources of energy able to reduce the world dependence of fossil oil. One of the most successful options is ethanol obtained mainly from sugarcane and corn fermentation. The foremost residue from sugarcane industry is the bagasse, a rich lignocellulosic raw material uses for the production of ethanol second generation (2G). New cellulolytic and hemicellulytic enzymes are needed, in order to optimize the degradation of bagasse and production of ethanol 2G. Results The ability to produce hemicellulases and related enzymes, suitable for lignocellulosic biomass deconstruction, was explored using 110 endophytic fungi and 9 fungi isolated from spoiled books in Brazil. Two initial selections were performed, one employing the esculin gel diffusion assay, and the other by culturing on agar plate media with beechwood xylan and liquor from the hydrothermal pretreatment of sugar cane bagasse. A total of 56 isolates were then grown at 29°C on steam-exploded delignified sugar cane bagasse (DEB) plus soybean bran (SB) (3:1), with measurement of the xylanase, pectinase, β-glucosidase, CMCase, and FPase activities. Twelve strains were selected, and their enzyme extracts were assessed using different substrates. Finally, the best six strains were grown under xylan and pectin, and several glycohydrolases activities were also assessed. These strains were identified morphologically and by sequencing the internal transcribed spacer (ITS) regions and the partial β-tubulin gene (BT2). The best six strains were identified as Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49. These strains produced glycohydrolases with different profiles, and production was highly influenced by the carbon sources in the media. Conclusions The selected endophytic fungi Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49 are excellent producers of hydrolytic enzymes to be used as part of blends to decompose sugarcane biomass at industrial level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract BACKGROUND: There is an imperative necessity for alternative sources of energy able to reduce the world dependence of fossil oil. One of the most successful options is ethanol obtained mainly from sugarcane and corn fermentation. The foremost residue from sugarcane industry is the bagasse, a rich lignocellulosic raw material uses for the production of ethanol second generation (2G). New cellulolytic and hemicellulytic enzymes are needed, in order to optimize the degradation of bagasse and production of ethanol 2G. RESULTS: The ability to produce hemicellulases and related enzymes, suitable for lignocellulosic biomass deconstruction, was explored using 110 endophytic fungi and 9 fungi isolated from spoiled books in Brazil. Two initial selections were performed, one employing the esculin gel diffusion assay, and the other by culturing on agar plate media with beechwood xylan and liquor from the hydrothermal pretreatment of sugar cane bagasse. A total of 56 isolates were then grown at 29°C on steam-exploded delignified sugar cane bagasse (DEB) plus soybean bran (SB) (3:1), with measurement of the xylanase, pectinase, β-glucosidase, CMCase, and FPase activities. Twelve strains were selected, and their enzyme extracts were assessed using different substrates. Finally, the best six strains were grown under xylan and pectin, and several glycohydrolases activities were also assessed. These strains were identified morphologically and by sequencing the internal transcribed spacer (ITS) regions and the partial β-tubulin gene (BT2). The best six strains were identified as Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49. These strains produced glycohydrolases with different profiles, and production was highly influenced by the carbon sources in the media. CONCLUSIONS: The selected endophytic fungi Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49 are excellent producers of hydrolytic enzymes to be used as part of blends to decompose sugarcane biomass at industrial level.