23 resultados para Soybean -- Genetics
Resumo:
As the requirement for agriculture to be environmentally suitable there is a necessity to adopt indicators and methodologies approaching sustainability. In Brazil, biodiesel addition into diesel is mandatory and soybean oil is its main source. The material embodiment determines the convergence of inputs into the crop. Moreover, the material flows are necessary for any environmental analysis. This study evaluated distinct production scenarios, and also conventional versus GMO crops, through the material embodiment and energy analysis. GMO crops demanded less indirectly applied inputs. The energy balance showed linearity with yield, whereas for EROI, the increases in input and yield were not affected.
Resumo:
Weed control has always been an important issue in agriculture. With the advent of no-till systems, soil erosion was reduced but herbicide use was increased. Organic no-till systems try to adjust reduced erosion to the no use of herbicides. Nevertheless, this adjustment is limited by the cost of mechanical weed control. This cost may be reduced by improved cultural weed control with cover crops mulches. In this paper we report a study on the application of compost manure on an oats winter cover crop, preceding soybean, instead of on the soybean summer crop. Treatments comprised a control without compost manure, and compost manure doses of 4 and 8 Mg ha-1 applied either on oats in winter or soybean in summer, organized in a randomized block design, with five replications. In summer, plots were split into weed-controlled or not controlled subplots. The timing of application and the manure doses did not affect the oats biomass or the soybean performance. However, in summer, without water stress, the application of manure at 8 Mg ha-1 directly on soybean has reduced weed biomass in this crop.
Resumo:
The correlation of soil fertility x seed physiological potential is very important in the area of seed technology but results published with that theme are contradictory. For this reason, this study to evaluate the correlations between soil chemical properties and physiological potential of soybean seeds. On georeferenced points, both soil and seeds were sampled for analysis of soil fertility and seed physiological potential. Data were assessed by the following analyses: descriptive statistics; Pearson's linear correlation; and geostatistics. The adjusted parameters of the semivariograms were used to produce maps of spatial distribution for each variable. Organic matter content, Mn and Cu showed significant effects on seed germination. Most variables studied presented moderate to high spatial dependence. Germination and accelerated aging of seeds, and P, Ca, Mg, Mn, Cu and Zn showed a better fit to spherical semivariogram: organic matter, pH and K had a better fit to Gaussian model; and V% and Fe showed a better fit to the linear model. The values for range of spatial dependence varied from 89.9 m for P until 651.4 m for Fe. These values should be considered when new samples are collected for assessing soil fertility in this production area.
Resumo:
The objective of this study was to investigate the possibility of using hydric restriction as a method for evaluating vigor of soybean seeds. The soybean seeds, cultivar BRS 245RR, represented by four different seed lots, were characterized by germination and vigor. For the treatment of hydric restriction and temperature, the combination of substrate water potential and temperature were the following: deionized water (0.0 MPa); polyethylene glycol (PEG 6000) aqueous solution (-0.1, -0.3 and -0.5 MPa); and four temperatures (20 ºC, 25 ºC, 30 ºC, and 35 ºC), respectively. A completely randomized experimental design was used, with four replications per treatment, and the ANOVA was performed individually for each combination of temperature and water potential of substrate. According to results obtained, the test of hydric restriction has the same efficiency of the accelerated aging test in estimating vigor of soybean seeds, cv. BRS 245RR, when water potentials of -0.1 MPa or -0.3 MPa at a temperature of 25 ºC, or -0.3 MPa at a temperature of 30 ºC are used.
Resumo:
Despite the great importance of soybeans in Brazil, there have been few applications of soybean crop modeling on Brazilian conditions. Thus, the objective of this study was to use modified crop models to estimate the depleted and potential soybean crop yield in Brazil. The climatic variable data used in the modified simulation of the soybean crop models were temperature, insolation and rainfall. The data set was taken from 33 counties (28 Sao Paulo state counties, and 5 counties from other states that neighbor São Paulo). Among the models, modifications in the estimation of the leaf area of the soybean crop, which includes corrections for the temperature, shading, senescence, CO2, and biomass partition were proposed; also, the methods of input for the model's simulation of the climatic variables were reconsidered. The depleted yields were estimated through a water balance, from which the depletion coefficient was estimated. It can be concluded that the adaptation soybean growth crop model might be used to predict the results of the depleted and potential yield of soybeans, and it can also be used to indicate better locations and periods of tillage.
Resumo:
Studies addressing the estimation of genetic parameters in soybean have not emphasized the epistatic effects. The purpose of this study was to estimate the significance of these effects on soybean grain yield, based on the Modified Triple Test Cross design. Thirty-two inbred lines derived from a cross between two contrasting lines were used, which were crossed with two testers (L1 and L2). The experiments were carried out at two locations, in 10 x 10 triple lattice designs with 9 replications, containing 32 lines (Pi ), 64 crosses (32 Pi x L1 and 32 Pi x L2 ) and controls. The variation between ( ͞L1i + ͞L2i - ͞Pi ) revealed the presence of epistasis, as well as an interaction of epistasis x environment. Since the predominant component of epistasis in autogamous species is additive x additive (i type), we suggest postponing the selection for grain yield to later generations of inbreeding in order to exploit the beneficial effects of additive x additive epistasis.