18 resultados para Sex customs.
Resumo:
Although sex ratios close to unity are expected in dioecious species, biased sex ratios are common in nature. It is essential to understand causes of skewed sex ratios in situ, as they can lead to mate limitation and have implications for the success of natural populations. Female-skewed sex ratios are commonly observed in copepods in situ. Here we discuss the challenges of copepod sex ratio research and provide a critical review of factors determining copepod sex ratios, focusing on 2 main objectives. The first is a critique of the male predation theory, which is currently the main process thought to be responsible for female-skewed sex ratios. It assumes that males have higher mortality because of increased vulnerability to predation during their search for mates. We show that there is little support for the male predation theory, that sex ratios skewed toward females occur in the absence of predation, that sex ratios are not related to predation pressure, and that where sex-skewed predation does occur, it is biased toward females. Our second objective is to suggest alternative hypotheses regarding the determination of sex ratios. We demonstrate that environmental factors, environmental sex determination and sex change have strong effects on copepod sex ratios, and suggest that differential physiological longevity of males and females may be more important in determining sex ratios than previously thought. We suggest that copepod sex ratios are the result of a mixture of factors.
Resumo:
Hirst et al. (2013; Mar Ecol Prog Ser 489:297-298) suggest that Gusmão et al. (2013; Mar Ecol Prog Ser 482:279-298) misinterpreted the findings of Hirst et al. (2010; Limnol Oceanogr 55:2193-2206). They restate that the major factors determining sex ratio in pelagic copepods act upon the adult stage, but they place less emphasis on the idea that predation on male copepods is a likely determinant, and highlight the role of physiological longevity. Here we reconsider the data and confirm our position that at present there is limited evidence to support the theory of male-skewed predation. However, we agree that sex determination is governed by a combination of factors, with the relative emphasis being the main point of contention between the 2 parties.
Resumo:
In beef cattle, the ability to conceive has been associated positively with size of the preovulatory follicle (POF). Proestrus estradiol and subsequent progesterone concentrations can regulate the endometrium to affect receptivity and fertility. The aim of the present study was to verify the effect of the size of the POF on luteal and endometrial gene expression during subsequent early diestrus in beef cattle. Eighty-three multiparous, nonlactating, presynchronized Nelore cows received a progesterone-releasing device and estradiol benzoate on Day–10 (D 10). Animals received cloprostenol (large follicle-large CL group; LF-LCL; N ¼ 42) or not (small follicle-small CL group; SF-SCL; N ¼ 41) on D 10. Progesterone devices were withdrawn and cloprostenol administered 42 to 60 hours (LF-LCL) or 30 to 36 hours (SF-SCL) before GnRH treatment (D0). Tissues were collected at slaughter on D7. The LF-LCL group had larger (P < 0.0001) POF (13.24 0.33 mm vs. 10.76 0.29 mm), greater (P < 0.0007) estradiol concentrations on D0 (2.94 0.28 pg/mL vs. 1.27 0.20 pg/mL), and greater (P < 0.01) progesterone concentrations on D7 (3.71 0.25 ng/mL vs. 2.62 0.26 ng/mL) compared with the SF-SCL group. Luteal gene expression of vascular endothelial growth factor A, kinase insert domain receptor, fms-related tyrosine kinase 1, steroidogenic acute regulatory protein, cytochrome P450, family 11, subfamily A, polypeptide 1, and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid deltaisomerase 7 was similar between groups. Endometrial gene expression of oxytocin receptor and peptidase inhibitor 3, skin-derived was reduced, and estrogen receptor alpha 2, aldo-keto reductase family 1, member C4, and lipoprotein lipase expression was increased in LF-LCL versus SF-SCL. Results support the hypothesis that the size of the POF alters the periovulatory endocrine milieu (i.e., proestrus estradiol and diestrus progesterone concentrations) and acts on the uterus to alter endometrial gene expression. It is proposed that the uterine environment and receptivity might also be modulated. Additionally, it is suggested that increased progesterone secretion of cows ovulating larger follicles is likely due to increased CL size rather than increased luteal expression of steroidogenic genes.