18 resultados para Segmented polynomials
Resumo:
The generalized finite element method (GFEM) is applied to a nonconventional hybrid-mixed stress formulation (HMSF) for plane analysis. In the HMSF, three approximation fields are involved: stresses and displacements in the domain and displacement fields on the static boundary. The GFEM-HMSF shape functions are then generated by the product of a partition of unity associated to each field and the polynomials enrichment functions. In principle, the enrichment can be conducted independently over each of the HMSF approximation fields. However, stability and convergence features of the resulting numerical method can be affected mainly by spurious modes generated when enrichment is arbitrarily applied to the displacement fields. With the aim to efficiently explore the enrichment possibilities, an extension to GFEM-HMSF of the conventional Zienkiewicz-Patch-Test is proposed as a necessary condition to ensure numerical stability. Finally, once the extended Patch-Test is satisfied, some numerical analyses focusing on the selective enrichment over distorted meshes formed by bilinear quadrilateral finite elements are presented, thus showing the performance of the GFEM-HMSF combination.
Resumo:
OBJECTIVE: To propose an automatic brain tumor segmentation system. METHODS: The system used texture characteristics as its main source of information for segmentation. RESULTS: The mean correct match was 94% of correspondence between the segmented areas and ground truth. CONCLUSION: Final results showed that the proposed system was able to find and delimit tumor areas without requiring any user interaction.
Resumo:
This paper describes a logic-based formalism for qualitative spatial reasoning with cast shadows (Perceptual Qualitative Relations on Shadows, or PQRS) and presents results of a mobile robot qualitative self-localisation experiment using this formalism. Shadow detection was accomplished by mapping the images from the robot’s monocular colour camera into a HSV colour space and then thresholding on the V dimension. We present results of selflocalisation using two methods for obtaining the threshold automatically: in one method the images are segmented according to their grey-scale histograms, in the other, the threshold is set according to a prediction about the robot’s location, based upon a qualitative spatial reasoning theory about shadows. This theory-driven threshold search and the qualitative self-localisation procedure are the main contributions of the present research. To the best of our knowledge this is the first work that uses qualitative spatial representations both to perform robot self-localisation and to calibrate a robot’s interpretation of its perceptual input.