25 resultados para Salts in soils
Resumo:
The study of the hydro-physical behavior in soils using toposequences is of great importance for better understanding the soil, water and vegetation relationships. This study aims to assess the hydro-physical and morphological characterization of soil from a toposequence in Galia, state of São Paulo, Brazil). The plot covers an area of 10.24 ha (320 × 320 m), located in a semi-deciduous seasonal forest. Based on ultra-detailed soil and topographic maps of the area, a representative transect from the soil in the plot was chosen. Five profiles were opened for the morphological description of the soil horizons, and hydro-physical and micromorphological analyses were performed to characterize the soil. Arenic Haplustult, Arenic Haplustalf and Aquertic Haplustalf were the soil types observed in the plot. The superficial horizons had lower density and greater hydraulic conductivity, porosity and water retention in lower tensions than the deeper horizons. In the sub-superficial horizons, greater water retention at higher tensions and lower hydraulic conductivity were observed, due to structure type and greater clay content. The differences observed in the water retention curves between the sandy E and the clay B horizons were mainly due to the size distribution, shape and type of soil pores.
Resumo:
Novel water-soluble decacationically armed C-60 and C-70 decaiodide monoadducts, C-60- and C-70[>M(C3N6+C3)(2)], were synthesized, characterized, and applied as photosensitizers and potential nano-PDT agents against pathogenic bacteria and cancer cells. A high number of cationic charges per fullerene cage and H-bonding moieties were designed for rapid binding to the anionic residues displayed on the outer parts of bacterial cell walls. In the presence of a high number of electron-donating iodide anions as parts of quaternary ammonium salts in the arm region, we found that C-70[>M(C3N6+C3)(2)] produced more HO center dot than C-60[>M(C3N6+C3)(2)], in addition to O-1(2). This finding offers an explanation of the preferential killing of Gram-positive and Gram-negative bacteria by C-60[>M(C3N6+C3)(2)] and C-70[>M(C3N6+C3)(2)], respectively. The hypothesis is that O-1(2) can diffuse more easily into porous cell walls of Gram-positive bacteria to reach sensitive sites, while the less permeable Gram-negative bacterial cell wall needs the more reactive HO center dot to cause real damage.
Resumo:
Warrick and Hussen developed in the nineties of the last century a method to scale Richards' equation (RE) for similar soils. In this paper, new scaled solutions are added to the method of Warrick and Hussen considering a wider range of soils regardless of their dissimilarity. Gardner-Kozeny hydraulic functions are adopted instead of Brooks-Corey functions used originally by Warrick and Hussen. These functions allow to reduce the dependence of the scaled RE on the soil properties. To evaluate the proposed method (PM), the scaled RE was solved numerically using a finite difference method with a fully implicit scheme. Three cases were considered: constant-head infiltration, constant-flux infiltration, and drainage of an initially uniform wet soil. The results for five texturally different soils ranging from sand to clay (adopted from the literature) showed that the scaled solutions were invariant to a satisfactory degree. However, slight deviations were observed mainly for the sandy soil. Moreover, the scaled solutions deviated when the soil profile was initially wet in the infiltration case or when deeply wet in the drainage condition. Based on the PM, a Philip-type model was also developed to approximate RE solutions for the constant-head infiltration. The model showed a good agreement with the scaled RE for the same range of soils and conditions, however only for Gardner-Kozeny soils. Such a procedure reduces numerical calculations and provides additional opportunities for solving the highly nonlinear RE for unsaturated water flow in soils. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Crown ethers have the ability of solubilizing inorganic salts in apolar solvents and to promote chemical reactions by phase-transfer catalysis. However, details on how crown ethers catalyze ionic S(N)2 reactions and control selectivity are not well understood. In this work, we have used high level theoretical calculations to shed light on the details of phase-transfer catalysis mechanism of KF reaction with alkyl halides promoted by 18-crown-6. A complete analysis of the of the model reaction between KF(18-crown-6) and ethyl bromide reveals that the calculations can accurately predict the product ratio and the overall kinetics. Our results point out the importance of the K* ion and of the crown ether ring in determining product selectivity. While the K* ion favors the S(N)2 over the E2 anti pathway, the crown ether ring favors the S(N)2 over E2 syn route. The combination effects lead to a predicted 94% for the S(N)2 pathway in excellent agreement with the experimental value of 92%. A detailed analysis of the overall mechanism of the reaction under phase-transfer conditions also reveals that the KBr product generated in the nucleophilic fluorination acts as an inhibitor of the 18-crown-6 catalyst and it is responsible for the observed slow reaction rate. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
No presente trabalho, foram comparados dois métodos de extração de cobre (Cu) e zinco (Zn) em solos com teor de matéria orgânica (MO) maior que 50g kg-1. Os métodos de extração comparados foram: Extração com HCl 0,1mol L-1 (método padrão para os estados do Rio Grande do Sul e Santa Catarina) e Mehlich 3. Este trabalho foi realizado no Laboratório de Química e Fertilidade do Solo da Universidade do Estado de Santa Catarina (UDESC), no ano de 2009. As duas metodologias de extração foram aplicadas em 286 amostras de solo provenientes do Laboratório de Análise do Solo da UDESC, todas com mais de 50g kg-1 de MO. Os teores de cobre e zinco nos extratos foram determinados por espectrometria de absorção atômica com chama. Os resultados mostraram que houve correlação significativa entre os métodos, Cu (r=0,80) e Zn (r=0,93). A solução de Mehlich 3 extraiu mais cobre e menos zinco, quando comparada à solução de HCl 0,1mol L-1. O Mehlich 3 demonstrou ser eficiente na extração de cobre e zinco em solos com alto teor de MO, podendo substituir o método atual.
Resumo:
Biodiesel production has received considerable attention in the recent past as a nonpolluting fuel. However, this assertion has been based on its biodegradability and reduction in exhaust emissions. Assessments of water and soil biodiesel pollution are still limited. Spill simulation with biodiesel and their diesel blends in soils were carried out, aiming at analyzing their cytotoxic and genotoxic potentials. While the cytotoxicity observed may be related to diesel contaminants, the genotoxic and mutagenic effects can be ascribed to biodiesel pollutants. Thus, taking into account that our data stressed harmful effects on organisms exposed to biodiesel-polluted soils, the designation of this biofuel as an environmental-friendly fuel should be carefully reviewed to assure environmental quality. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A recuperação e a restauração florestal de ecossistemas degradados podem não acontecer das maneiras desejadas se houver carência nutricional ou suprimento inadequado de nutrientes às plantas no estádio inicial de desenvolvimento de espécies florestais nativas. Objetivou-se nesta investigação avaliar os efeitos da deficiência de nutrientes em plantas jovens de aroeira-pimenteira (Schinus terebinthifolius Raddi). Para isso, induziu-se a sintomatologia de deficiência nutricional, determinaram-se os teores de nutrientes nas folhas e caules, e foi feita a avaliação do efeito da deficiência nutricional na altura, na produção de massa seca e no estoque de carbono do caule em plantas jovens de aroeira-pimenteira. O experimento foi conduzido em casa de vegetação, em blocos ao acaso, com três repetições, totalizando treze tratamentos, empregando a técnica de diagnose por subtração (-N, -P, -K, -Ca, -Mg, -S, -B, -Cu, -Fe, -Mn, -Mo, -Zn), sendo que em um dos tratamentos, as plantas foram cultivadas em solução nutritiva com todos nutrientes. Durante o experimento, observou-se que a deficiência nutricional, além de propiciar o aparecimento de sintomas de deficiência que prejudicam o desenvolvimento vegetal, comprometeu também a produção de massa de plantas jovens de aroeira-pimenteira. Estes resultados claramente evidenciam o fato de que projetos de implantação de florestas ou de recuperação e restauração de ecossistemas degradados que utilizem a aroeira-pimenteira, em solos que necessitem de suplementação nutricional, poderão ter seu sucesso comprometido se não houver a complementação nutricional necessária.
Resumo:
Ionic liquids based on 1-alkyl-3-methylimidazolium cations and the hydrogen sulfate (or bisulfate) anion, HSO4-, are much more viscous than ionic liquids with alkyl sulfates, RSO4-. The structural origin of the high viscosity of HSO4- ionic liquids is unraveled from detailed comparison of the anion Raman bands in 1-ethyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimidazolium hydrogen sulfate with available data for simple HSO(4)(-) salts in crystalline phase, molten phase, and aqueous solution. Two Raman bands at 1046 and 1010 cm(-1) have been assigned as symmetric stretching modes nu(s)(S = O) of HSO4-, the latter being characteristic of chains of hydrogen-bonded anions. The intensity of this component increases in the supercooled liquid phase. For comparison purposes, Raman spectra of 1-ethyl-3-methylimidazolium ethyl sulfate and 1-butyl-3-methylimidazolium methyl sulfate have been also obtained. There is no indication of difference in the strength of hydrogen bond interactions of imidazolium cations with HSO4- or RSO4- anions. Raman spectra at high pressures, up to 2.6 GPa, are also discussed. Raman spectroscopy provides evidence that hydrogen-bonded anions resulting in anion-anion interaction is the reason for the high viscosity of imidazolium ionic liquids with HSO4-. If the ionic liquid is exposed to moisture, these structures are disrupted upon absorption of water from the atmosphere.
Resumo:
In this work, it was evaluated the effect of moisture content on the structural and dielectric properties of cassava starch films by means of Fourier Transform infrared spectroscopy (FTIR), impedancimetric, and gravimetric analysis. The film samples were equilibrated in hermetically sealed desiccators, containing different saturated salts in water in order to promote activity of water between 0.11 and 0.85. The position and amplitude of the peaks in the fingerprint region of the FTIR spectra were changed due to the modifications in the interactions between the polymeric chains and water molecules. These effects may be related to the formation of semi-crystalline regions in the film structure. The dielectric properties of the films were also strongly dependent on the moisture content, showing a non-linear and a linear region, which was attributed to the domain of bound and free water in the film, respectively. The gravimetric analyzes showed the typical sigmoidal behavior, attributed to the way the water interacts with the biopolymer. Finally, the flexibility of the films increased with water content increasing.
Resumo:
Mechanical chiseling has been used to alleviate the effects of compaction in soils under no-tillage (NT). However, its effect on the soil physical properties does not seem to have a defined duration period. The purpose of this study was to evaluate the behavior of the bulk density (BD) and degree of compaction (DC) at different soil depths, after chiseling in no-tillage, for one year. The experiment was performed in Ponta Grossa, Paraná State, Brazil, using an Oxisol (Rhodic Hapludox). Bulk density and DC were previously measured in an area under NT for 16 years, then immediately after chiseling (CHI) in May 2009, six months after chiseling (CHI6M) in October 2009 and one year after chiseling (CHI12M) in May 2010. In the layers 0.0-0.10, 0.10-0.20 and 0.20-0.30 m, there was a significant BD reduction CHI and a marked increase CHI6M. The BD values measured CHI12M were similar to those before tillage. Chiseling reduced the DC in the layers 0.0-0.10 m and 0.10-0.20 m, but returned to the initial values one year later. During the evaluation periods CHI, CHI6M and CHI12M, the BD increased in the layer 0.30-0.40 m, compared with NT. The highest DC values were observed six months after chiseling; nevertheless the structural recovery of the soil was considerable, possibly due to the high degree of soil resilience and the influence of the wetting and drying cycles detected in the study period. The chiseling effects, evaluated by BD and DC, lasted less than one year, i.e., the beneficial short-term effects of chiseling on the reduction of the surface BD increased the risk of compaction in deeper soil layers.