45 resultados para Saliva -- metabolism
Resumo:
Background: Combined oral contraceptives used in an extended regimen have been studied because of their potential benefits; however, there have been few publications on extended regimens of contraceptive vaginal rings. The aim of this study was to assess the effects of these two extended regimens on the lipid metabolism of women using these contraceptive methods during 1 year. Study Design: This prospective study enrolled 150 women: 75 used a vaginal contraceptive ring (11.7 mg etonogestrel and 2.7 mg ethinyl estradiol), and 75 used oral contraceptives (30 mcg ethinyl estradiol and 150 mg desogestrel). Both groups used their respective method for 84 days followed by a 7-day pause during I year. At baseline and every 3 months during the study period, blood was collected to assess total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides and apolipoprotein (apo) A-I and B. The analysis of variance test was used to analyze differences in the results of these exams over time. Results: A total of 62 vaginal ring and 61 oral contraceptive users completed the study. There were no significant differences in the discontinuation rate, mean total cholesterol and fraction levels, apo B concentration or apo A-I/apo B ratio. Vaginal ring users had significantly higher apo A-I levels than oral contraceptive users. Conclusion: Despite the vaginal route of administration, the steroids released by the ring had the same effects on the lipid metabolism and lipoprotein levels typically seen with ethinyl estradiol given either by oral or parenteral routes. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Influence of nutritional variables and obesity on health and metabolism Obesity is a recurring theme in current scientific literature. This can easily be explained by its exponential increase in all layers of society. The popularity of this subject has also given rise to associated questions, which have achieved greater prominence in health-related publications. In order to assess what has been studied in the field of obesity and nutrition, an overview of all articles published on these subjects in some of the main Brazilian scientific journals over the past two years was performed. Among the subthemes selected for this study, those related to childhood obesity attracted attention due to their greater frequency. These were subdivided into: prevalence, intrauterine and breastfeeding influences that may lead to the development of this condition, impact on quality of life, cardiovascular system and metabolism, and possible prevention strategies. Furthermore, issues related to obesity in adults were explored, such as risk factors and new strategies for prevention, with special attention given to the many studies evaluating different aspects of bariatric surgery. Finally, the subject of malnutrition and the impact of the deficiency of specific micronutrients such as selenium, vitamin D, and vitamin B12 were assessed. Based on the results, it was possible to assess the actual importance of obesity and nutrition in health maintenance, and also the several lines of research regarding these issues. Thus, it is essential to create new methods, which must be quick and efficient, to update health professionals involved in the treatment of obesity.
Resumo:
Background: Shift work was recently described as a factor that increases the risk of Type 2 diabetes mellitus. In addition, rats born to mothers subjected to a phase shift throughout pregnancy are glucose intolerant. However, the mechanism by which a phase shift transmits metabolic information to the offspring has not been determined. Among several endocrine secretions, phase shifts in the light/dark cycle were described as altering the circadian profile of melatonin production by the pineal gland. The present study addresses the importance of maternal melatonin for the metabolic programming of the offspring. Methodology/Principal Findings: Female Wistar rats were submitted to SHAM surgery or pinealectomy (PINX). The PINX rats were divided into two groups and received either melatonin (PM) or vehicle. The SHAM, the PINX vehicle and the PM females were housed with male Wistar rats. Rats were allowed to mate and after weaning, the male and female offspring were subjected to a glucose tolerance test (GTT), a pyruvate tolerance test (PTT) and an insulin tolerance test (ITT). Pancreatic islets were isolated for insulin secretion, and insulin signaling was assessed in the liver and in the skeletal muscle by western blots. We found that male and female rats born to PINX mothers display glucose intolerance at the end of the light phase of the light/dark cycle, but not at the beginning. We further demonstrate that impaired glucose-stimulated insulin secretion and hepatic insulin resistance are mechanisms that may contribute to glucose intolerance in the offspring of PINX mothers. The metabolic programming described here occurs due to an absence of maternal melatonin because the offspring born to PINX mothers treated with melatonin were not glucose intolerant. Conclusions/Significance: The present results support the novel concept that maternal melatonin is responsible for the programming of the daily pattern of energy metabolism in their offspring.
Resumo:
(Diurnal changes in storage carbohydrate metabolism in cotyledons of the tropical tree Hymenaea courbaril L. (Leguminosae)). The cotyledons of Hymenaea courbaril store large amounts of xyloglucan, a cell wall polysaccharide that is believed to serve as storage for the period of seedling establishment. During storage mobilisation, xyloglucan seems to be degraded by a continuous process that starts right after radicle protrusion and follows up to the establishment of photosynthesis. Here we show evidence that events related to the hydrolases activities and production (alpha-xylosidase, beta-galactosidase, beta-glucosidase and xyloglucan endo-beta-transglucosilase) as well as auxin, showed changes that follow the diurnal cycle. The period of higher hydrolases activities was between 6pm and 6am, which is out of phase with photosynthesis. Among the enzymes, alpha-xilosidase seems to be more important than beta-glucosidase and beta-galactosidase in the xyloglucan disassembling mechanism. Likewise, the sugars related with sucrose metabolism followed the rhythm of the hydrolases, but starch levels were shown to be practically constant. A high level of auxin was observed during the night, what is compatible with the hypothesis that this hormone would be one of the regulators of the whole process. The probable biological meaning of the existence of such a complex control mechanism during storage mobilisation is likely to be related to a remarkably high level of efficiency of carbon usage by the growing seedling of Hymenaea courbaril, allowing the establishment of very vigorous seedlings in the tropical forest.
Resumo:
Schizophrenia has been defined as a neurodevelopmental disease that causes changes in the process of thoughts, perceptions. and emotions, usually leading to a mental deterioration and affective blunting. Studies have shown altered cell respiration and oxidative stress response in schizophrenia; however, most of the knowledge has been acquired from postmortem brain analyses or from nonneural cells. Here we describe that neural cells, derived from induced pluripotent stem cells generated from skin fibroblasts of a schizophrenic patient, presented a twofold increase in extramitochondrial oxygen consumption as well as elevated levels of reactive oxygen species (ROS), when compared to controls. This difference in ROS levels was reverted by the mood stabilizer valproic acid. Our model shows evidence that metabolic changes occurring during neurogenesis are associated with schizophrenia, contributing to a better understanding of the development of the disease and highlighting potential targets for treatment and drug screening.
Resumo:
Context: Periodontitis is the most common lytic disease of bone and is recognized as a common complication of diabetes. Lipid peroxidation (LPO) is increased in diabetes and may be related to modulation of the inflammatory response. LPO levels in patients with diabetes and periodontal disease have not been evaluated. Objective: The aim of this study was to evaluate the levels of LPO and its correlation with periodontal status and inflammatory cytokines in type 2 diabetic and nondiabetic patients. Design and Setting: This is a cross-sectional study involving Brazilian patients recruited at the State University of Sao Paulo. Patients: The sample comprised 120 patients divided into four groups based upon diabetic and dyslipidemic status: poorly controlled diabetics with dyslipidemia, well-controlled diabetics with dyslipidemia, normoglycemic individuals with dyslipidemia, and healthy individuals. Main Outcome Measures: Blood analyses were carried out for fasting plasma glucose, glycated hemoglobin, and lipid profile. Periodontal examinations were performed, and gingival crevicular fluid was collected. LPO levels were evaluated by measuring oxidized low-density lipoprotein (ELISA) and malondialdehyde (HPLC). Cytokines were evaluated by the multiplex bead technique. Results: LPO evaluated by malondialdehyde in plasma and gingival crevicular fluid was significantly increased in diabetes groups. Significant correlations between LPO markers and periodontal parameters indicate a direct relationship between these levels and the severity of inflammation and secretion of inflammatory cytokines, particularly in diabetic patients. Conclusion: These findings suggest an important association for LPO with the severity of the local inflammatory response to bacteria and the susceptibility to periodontal disease in diabetic patients. (J Clin Endocrinol Metab 97: E1353-E1362, 2012)
Resumo:
Glutamine is an essential nutrient for cancer cell proliferation, especially in the context of citric acid cycle anaplerosis. In this manuscript we present results that collectively demonstrate that, of the three major mammalian glutaminases identified to date, the lesser studied splice variant of the gene gls, known as Glutaminase C (GAC), is important for tumor metabolism. We show that, although levels of both the kidney-type isoforms are elevated in tumor vs. normal tissues, GAC is distinctly mitochondrial. GAC is also most responsive to the activator inorganic phosphate, the content of which is supposedly higher in mitochondria subject to hypoxia. Analysis of X-ray crystal structures of GAC in different bound states suggests a mechanism that introduces the tetramerization-induced lifting of a "gating loop" as essential for the phosphate-dependent activation process. Surprisingly, phosphate binds inside the catalytic pocket rather than at the oligomerization interface. Phosphate also mediates substrate entry by competing with glutamate. A greater tendency to oligomerize differentiates GAC from its alternatively spliced isoform and the cycling of phosphate in and out of the active site distinguishes it from the liver-type isozyme, which is known to be less dependent on this ion.
Resumo:
Over the last decades, the presence of methylmercury (MeHg) in the Amazon region of Brazil and its adverse human health effects have given rise to much concern. The biotransformation of MeHg occurs mainly through glutathione (GSH) in the bile mediated by conjugation with glutathione S-transferases (GST). Epidemiological evidence has shown that genetic polymorphisms may affect the metabolism of MeHg. The aim of this study was to evaluate the association between GST polymorphisms, GSH, and Hg levels in blood (B-Hg) and in hair (H-Hg) of an Amazon population chronically exposed to the metal through fish consumption. Blood and hair samples were collected from 144 volunteers (71 men, 73 women). B-Hg and H-Hg levels were determined by inductively coupled plasma-mass spectrometry, and GSH levels were evaluated by a spectrophotometric method. GSTM1 and T1 genotyping evaluation were carried out by multiplex polymerase chain reaction (PCR). Mean levels of B-Hg and H-Hg were 37.7 +/- 24.5 mu g/L and 10.4 +/- 7.4 mu g/g, respectively; GSH concentrations ranged from 0.52 to 2.89 mu M/ml of total blood. Distributions for GSTM1/T1, GSTM1/GSTT1*0, GSTM1*0/T1, and GSTM1*0/GSTT1*0 genotypes were 35.4, 22.2, 25.0, and 17.4%, respectively. GSTT1 genotype carriers presented lower levels of B-Hg and H-Hg when compared to other genotypes carriers. In addition, GSTM1*0/GSTT1*0 individuals presented higher Hg levels in blood and hair than subjects presenting any other genotypes. There appeared to be no evidence of an effect of polymorphisms on GSH levels. Therefore, our data suggest that GST polymorphisms may be associated with MeHg detoxification.
Resumo:
Metabolic studies are very important to improve quality of functional dairy products. For this purpose, the behaviors of pure cultures of Streptococcus thermophilus (St) and Lactobacillus rhamnosus (Lr) as well a co-culture of them (St-Lr) were investigated during skim milk fermentation, and the inulin effect as prebiotic was assessed. Lr was able to metabolize 6 g/100 g more galactose than St and St-Lr. Final lactic acid production by Lr was higher (9.8 g/L) compared to St (9.1 g/L) and St-Lr (9.1 g/L). Acetic acid concentration varied from 0.8 g/L (St-Lr) to 1.5 g/L (Lr) and that of ethanol from only 0.2 g/L (St-Lr) to 0.4 g/L (Lr), which suggests the occurrence in Lr of a NADH oxidase activity and citrate co-metabolization via pyruvate, both dissipating a part of the reducing power. Diacetyl and acetoin accumulated at the highest levels (18.4 and 0.8 mg/L, respectively) with St-Lr, which suggests possible synergistic interactions between these microorganisms as well as the Lr capability of co-metabolizing citrate in the presence of lactose. Inulin stimulated both biomass growth and levels of all end-products, as the likely result of fructose release from its partial hydrolysis and subsequent metabolization as an additional carbon and energy source. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.
Resumo:
We undertook a study of Porphyra acanthophora var. brasiliensis to determine its responses under ambient conditions, photosynthetically active radiation (PAR), and PAR+UVBR (ultraviolet radiation-B) treatment, focusing on changes in ultrastructure, and cytochemistry. Accordingly, control ambient samples were collected in the field, and two different treatments were performed in the laboratory. Plants were exposed to PAR at 60 mu mol photons m(-2) s(-1) and PAR+UVBR at 0.35 W m(-2) for 3 h per day during 21 days of in vitro cultivation. Confocal laser scanning microscopy analysis of the vegetative cells showed single stellate chloroplast in ambient and PAR samples, but in PAR+UVBR-exposed plants, the chloroplast showed alterations in the number and form of arms. Under PAR+UVBR treatment, the thylakoids of the chloroplasts were disrupted, and an increase in the number of plastoglobuli was observed, in addition to mitochondria, which appeared with irregular, disrupted morphology compared to ambient and PAR samples. After UVBR exposure, the formation of carpospores was also observed. Plants under ambient conditions, as well as those treated with PAR and PAR+UVBR, all showed different concentrations of enzymatic response, including glutathione peroxidase and reductase activity. In summary, the present study demonstrates that P. acanthophora var. brasiliensis shows the activation of distinct mechanisms against natural radiation, PAR and PAR+UVBR.
Resumo:
Human T-lymphotropic virus type 1 (HTLV-1) is associated with adult T-cell leukemia (ATL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and has also been implicated in several disorders, including periodontal disease. The proviral load is an important biological marker for understanding HTLV-1 pathogenesis and elucidating whether or not the virus is related to the clinical manifestation of the disease. This study describes the oral health profile of HTLV-1 carriers and HAM/TSP patients in order to investigate the association between the proviral load in saliva and the severity of the periodontal disease and to examine virus intra-host variations from peripheral blood mononuclear cells and saliva cells. It is a cross-sectional analytical study of 90 individuals carried out from November 2006 to May 2008. Of the patients, 60 were HTLV-1 positive and 30 were negative. Individuals from the HTLV-1 positive and negative groups had similar mean age and social-economic status. Data were analyzed using two available statistical software packages, STATA 8.0 and SPSS 11.0 to conduct frequency analysis. Differences of P?<?0.05 were considered statistically significant. HTLV-1 patients had poorer oral health status when compared to seronegative individuals. A weak positive correlation between blood and saliva proviral loads was observed. The mean values of proviral load in blood and saliva in patients with HAM/TSP was greater than those in HTLV-1 carriers. The HTLV-1 molecular analysis from PBMC and saliva specimens suggests that HTLV-1 in saliva is due to lymphocyte infiltration from peripheral blood. A direct relationship between the proviral load in saliva and oral manifestations was observed. J. Med. Virol. 84:1428-1436, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Objective: Diabetes causes changes in the salivary glands and in the composition of saliva, as well as symptoms such as dry mouth and hyposalivation. Therefore, this study aimed at investigating changes in salivary secretion and composition, in response to parasympathetic stimuli, in diabetic rats induced with streptozotocin. Design: Diabetes was induced by a single intraperitoneal injection of streptozotocin. Thirty days after diabetes induction, the animals were anaesthetized and salivation was stimulated by an intraperitoneal injection of Pilocarpine (0.6 mg/kg body weight) dissolved in distilled water. Saliva was collected for 40 min and immediately stored at -80 degrees C until analysis. The salivary flow rate, amount of total protein, amylase and peroxidase activities, and free and total sialic acid contents were measured. Results: Salivary flow rate was reduced in the diabetic group (p < 0.05). Moreover, increases in total protein amount and in amylase and peroxidase activities were observed in diabetic animals. No difference was observed for free sialic acid content between groups. On the other hand, a significantly decrease in the total sialic acid content was observed in the diabetic group (p < 0.05). Conclusions: Our findings suggest that a decrease in sialic acid in the saliva of diabetic animals can be related to xerostomia reported by diabetic patients. However, further clinical trials are needed to verify if the decrease in sialic acid also occurs in human saliva. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Individuals with Down syndrome (DS) carry three copies of the Cystathionine beta-synthase (C beta S) gene. The increase in the dosage of this gene results in an altered profile of metabolites involved in the folate pathway, including reduced homocysteine (Hcy), methionine, S-adenosylhomocysteine (SAH) and S-adenosylmethionine (SAM). Furthermore, previous studies in individuals with DS have shown that genetic variants in genes involved in the folate pathway influence the concentrations of this metabolism's products. The purpose of this study is to investigate whether polymorphisms in genes involved in folate metabolism affect the plasma concentrations of Hcy and methylmalonic acid (MMA) along with the concentration of serum folate in individuals with DS. Twelve genetic polymorphisms were investigated in 90 individuals with DS (median age 1.29 years, range 0.07-30.35 years; 49 male and 41 female). Genotyping for the polymorphisms was performed either by polymerase chain reaction (PCR) based techniques or by direct sequencing. Plasma concentrations of Hcy and MMA were measured by liquid chromatography-tandem mass spectrometry as previously described, and serum folate was quantified using a competitive immunoassay. Our results indicate that the MTHFR C677T, MTR A2756G, TC2 C776G and BHMT G742A polymorphisms along with MMA concentration are predictors of Hcy concentration. They also show that age and Hcy concentration are predictors of MMA concentration. These findings could help to understand how genetic variation impacts folate metabolism and what metabolic consequences these variants have in individuals with trisomy 21.
Resumo:
Cancer cachexia causes metabolic alterations with a marked effect on hepatic lipid metabolism. l-Carnitine modulates lipid metabolism and its supplementation has been proposed as a therapeutic strategy in many diseases. In the present study, the effects of l-carnitine supplementation on gene expression and on liver lipid metabolism-related proteins was investigated in cachectic tumour-bearing rats. Wistar rats were assigned to receive 1 g/kg of l-carnitine or saline. After 14 days, supplemented and control animals were assigned to a control (N), control supplemented with l-carnitine (CN), tumour-bearing Walker 256 carcinosarcoma (TB) and tumour-bearing supplemented with l-carnitine (CTB) group. The mRNA expression of carnitine palmitoyltransferase I and II (CPT I and II), microsomal triglyceride transfer protein (MTP), liver fatty acid-binding protein (L-FABP), fatty acid translocase (FAT/CD36), peroxisome proliferator-activated receptor-alpha (PPAR-alpha) and organic cation transporter 2 (OCTN2) was assessed, and the maximal activity of CPT I and II in the liver measured, along with plasma and liver triacylglycerol content. The gene expression of MTP, and CPT I catalytic activity were reduced in TB, who also showed increased liver (150%) and plasma (3.3-fold) triacylglycerol content. l-Carnitine supplementation was able to restore these parameters back to control values (p < 0.05). These data show that l-carnitine preserves hepatic lipid metabolism in tumour-bearing animals, suggesting its supplementation to be of potential interest in cachexia.
Resumo:
The bioactive naphtoquinone lapachol was studied in vitro by a biomimetic model with Jacobsen catalyst (manganese(III) salen) and iodosylbenzene as oxidizing agent. Eleven oxidation derivatives were thus identified and two competitive oxidation pathways postulated. Similar to Mn(III) porphyrins, Jacobsen catalyst mainly induced the formation of para-naphtoquinone derivatives of lapachol, but also of two ortho-derivatives. The oxidation products were used to develop a GC MS (SIM mode) method for the identification of potential phase I metabolites in vivo. Plasma analysis of Wistar rats orally administered with lapachol revealed two metabolites, alpha-lapachone and dehydro-alpha-lapachone. Hence, the biomimetic model with a manganese salen complex has evidenced its use as a valuable tool to predict and elucidate the in vivo phase I metabolism of lapachol and possibly also of other bioactive natural compounds. (C) 2012 Elsevier Masson SAS. All rights reserved.