19 resultados para Saline water conversion plants
Resumo:
Cellulase, an enzymatic complex that synergically promotes the degradation of cellulose to glucose and cellobiose, free or adsorbed onto Si/SiO(2) wafers at 60 degrees C has been employed as catalyst in the hydrolysis of microcrystalline cellulose (Avicel), microcrystalline cellulose pre-treated with hot phosphoric acid (CP), cotton cellulose (CC) and eucalyptus cellulose (EC). The physical characteristics such as index of crystallinity (I(C)), degree of polymerization (DP) and water sorption values were determined for all samples. The largest conversion rates of cellulose into the above-mentioned products using free cellulase were observed for samples with the largest water sorption values; conversion rates showed no correlation with either IC or DP of the biopolymer. Cellulose with large water sorption value possesses large pore volumes, hence higher accessibility. The catalytic efficiency of immobilized cellulase could not be correlated with the physical characteristics of cellulose samples. The hydrolysis rates of the same cellulose samples with immobilized cellulase were lower than those by the free enzyme, due to the diffusion barrier (biopolymer chains approaching to the immobilized enzyme) and less effective contact between the enzyme active site and its substrate. Immobilized cellulase, unlike its free counterpart, can be recycled at least six times without loss of catalytic activity, leading to higher overall cellulose conversion. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Trigeneration systems have been used with advantage in the last years in distributed electricity generation systems as a function of a growth of natural gas pipeline network distribution system, tax incentives, and energy regulation policies. Typically, a trigeneration system is used to produce electrical power simultaneously with supplying heating and cooling load by recovering the combustion products thermal power content that otherwise would be driven to atmosphere. Concerning that, two small scale trigeneration plants have been tested for overall efficiency evaluation and operational comparison. The first system is based on a 30 kW (ISO) natural gas powered microturbine, and the second one uses a 26 kW natural gas powered internal combustion engine coupled to an electrical generator as a prime mover. The stack gases from both machines were directed to a 17.6 kW ammonia-water absorption refrigeration chiller for producing chilled water first and next to a water heat recovery boiler in order to produce hot water. Experimental results are presented along with relevant system operational parameters for appropriate operation including natural gas consumption, net electrical and thermal power production, i.e., hot and cold water production rates, primary energy saving index, and the energy utilization factor over total and partial electrical load operational conditions. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The expansion of soybean cultivation into the Amazon in Brazil has potential hydrological effects at local to regional scales. To determine the impacts of soybean agriculture on hydrology, a comparison of net precipitation (throughfall, stemflow) in undisturbed tropical forest and soybean fields on the southern edge of the Amazon Basin in the state of Mato Grosso is needed. This study measured throughfall with troughs and stemflow with collar collectors during two rainy seasons. The results showed that in forest 91.6% of rainfall was collected as throughfall and 0.3% as stemflow, while in soybean fields with two-month old plants, 46.2% of rainfall was collected as throughfall and 9.0% as stemflow. Hence, interception of precipitation in soybean fields was far greater than in intact forests. Differences in throughfall, stemflow and net precipitation were found to be mainly associated with differences in plant structure and stem density in transitional forest and soybean cropland. Because rainfall interception in soybean fields is higher than previously believed and because both the area of cropland and the frequency of crop cycles (double cropping) are increasing rapidly, interception needs to be reconsidered in regional water balance models when consequences of land cover changes are analyzed in the Amazon soybean frontier region. Based on the continued expansion of soybean fields across the landscape and the finding that net precipitation is lower in soy agriculture, a reduction in water availability in the long term can be assumed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This study deals with the seasonal distribution of Al, Ca, Cu, Fe, K, Mg, Na, Pb and Zn and water soluble ions (Cl-, PO4(3-), NO3-, SO4(2-), HCOO-, CH3COO-, oxalate, succinate, Na+, NH4+, K+, Mg2+ and Ca2+) found in PM10 samples (particulate matter less than 10 mm in diameter) São Paulo City, Brazil, (April 2003-May 2004). Higher atmospheric levels were found for SO4(2-), NO3-, Cl- and PO4(3-) while the main organic anions were oxalate and formate. Atmospheric levels for elements were: Fe > Al > Ca > K > Na > Mg > Zn > Cu > Pb. Some sources were predominant for some species: (i) fuel burning and/or biomass burning (NO3-, HCOO-, C2O4(2-), K+, Mg2+, Ca2+, Fe, Pb, Zn, Al, Ca, K and Mg), (ii) gas-to-particle conversion (SO4(2-) and NH4+) and (iii) sea salt spray (Cl-, Na+ and Na).