45 resultados para STRUCTURAL PHASE TRANSITION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lyotropic liquid crystalline quaternary mixtures of potassium laurate (KL), potassium sulphate (K2SO4)/alcohol (n-OH)/water, with the alcohols having different numbers of carbon atoms in the alkyl chain (n), from 1-octanol to 1-hexadecanol, were investigated by optical techniques (optical microscopy and laser conoscopy). The biaxial nematic phase domain is present in a window of values of n = n(KL) +/- 2, where n(KL) = 11 is the number of carbon atoms in the alkyl chain of KL. The biaxial phase domain became smaller and the uniaxial-to-biaxial phase transition temperatures shifted to relatively higher temperatures upon going from 1-nonanol to 1-tridecanol. Moreover, compared with other lyotropic mixtures these new mixtures present high birefringence values, which we expect to be related to the micellar shape anisotropy. Our results are interpreted assuming that alcohol molecules tend to segregate in the micelles in a way that depends on the relative value of n with respect to nKL. The larger the value of n, the more alcohol molecules tend to be located in the curved parts of the micelle, favoring the uniaxial nematic calamitic phase with respect to the biaxial and uniaxial discotic nematic phases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Structural properties of model membranes, such as lipid vesicles, may be investigated through the addition of fluorescent probes. After incorporation, the fluorescent molecules are excited with linearly polarized light and the fluorescence emission is depolarized due to translational as well as rotational diffusion during the lifetime of the excited state. The monitoring of emitted light is undertaken through the technique of time-resolved fluorescence: the intensity of the emitted light informs on fluorescence decay times, and the decay of the components of the emitted light yield rotational correlation times which inform on the fluidity of the medium. The fluorescent molecule DPH, of uniaxial symmetry, is rather hydrophobic and has collinear transition and emission moments. It has been used frequently as a probe for the monitoring of the fluidity of the lipid bilayer along the phase transition of the chains. The interpretation of experimental data requires models for localization of fluorescent molecules as well as for possible restrictions on their movement. In this study, we develop calculations for two models for uniaxial diffusion of fluorescent molecules, such as DPH, suggested in several articles in the literature. A zeroth order test model consists of a free randomly rotating dipole in a homogeneous solution, and serves as the basis for the study of the diffusion of models in anisotropic media. In the second model, we consider random rotations of emitting dipoles distributed within cones with their axes perpendicular to the vesicle spherical geometry. In the third model, the dipole rotates in the plane of the of bilayer spherical geometry, within a movement that might occur between the monolayers forming the bilayer. For each of the models analysed, two methods are used by us in order to analyse the rotational diffusion: (I) solution of the corresponding rotational diffusion equation for a single molecule, taking into account the boundary conditions imposed by the models, for the probability of the fluorescent molecule to be found with a given configuration at time t. Considering the distribution of molecules in the geometry proposed, we obtain the analytical expression for the fluorescence anisotropy, except for the cone geometry, for which the solution is obtained numerically; (II) numerical simulations of a restricted rotational random walk in the two geometries corresponding to the two models. The latter method may be very useful in the cases of low-symmetry geometries or of composed geometries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main constituents of red mud produced in Aluminio city (S.P., Brazil) are iron, aluminum, and silicon oxides. It has been determined that the average particle diameter for this red mud is between 0.05 and 0.002 mm. It is observed that a decrease in the percentage of smaller particles occurs at temperatures greater than 400 degrees C. This observation corresponds with the thermal analysis and X-ray diffraction (XRD) data, which illustrate the phase transition of goethite to hematite. A 10% mass loss is observed in the thermal analysis patterns due to the hydroxide-oxide phase transitions of iron (primary phase transition) and aluminum (to a lesser extent). The disappearance and appearance of the different phases of iron and aluminum confirms the decomposition reactions proposed by the thermal analysis data. This Brazilian red mud has been classified as mesoporous at all temperatures except between 400 and 500 degrees C where the classification changes to micro/mesoporous.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction of the cationic meso-tetrakis 4-N-methylpyridyl porphyrin (TMPyP) with large unilamellar vesicles (LUVs) was investigated in the present study. LUVs were formed by mixtures of the zwitterionic 1,2-dipalmitoyl-sn-glycero-phosphatidylcholine (DPPC) and anionic 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) phospholipids, at different DPPG molar percentages. All investigations were carried out above (50 degrees C) and below (25 degrees C) the main phase transition temperature of the LUVs (similar to 41 degrees C). The binding constant values, K-b, estimated from the time-resolved fluorescence study, showed a significant increase of the porphyrin affinity at higher mol% DPPG. This affinity is markedly increased when the LUVs are in the liquid crystalline state. For both situations, the increase of the K-b value was also followed by a higher porphyrin fraction bound to the LUVs. The displacement of the vesicle-bound porphyrins toward the aqueous medium, upon titration with the salt potassium chloride (KCl), was also studied. Altogether, our steady-state and frequency-domain fluorescence quenching data results indicate that the TMPyP is preferentially located at the LUVs Stern layer. This is supported by the zeta potential studies, where a partial neutralization of the LUVs surface charge, upon porphyrin titration, was observed. Dynamic light scattering (DLS) results showed that, for some phospholipid systems, this partial neutralization leads to the LUVs flocculation. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present paper has two goals. First to present a natural example of a new class of random fields which are the variable neighborhood random fields. The example we consider is a partially observed nearest neighbor binary Markov random field. The second goal is to establish sufficient conditions ensuring that the variable neighborhoods are almost surely finite. We discuss the relationship between the almost sure finiteness of the interaction neighborhoods and the presence/absence of phase transition of the underlying Markov random field. In the case where the underlying random field has no phase transition we show that the finiteness of neighborhoods depends on a specific relation between the noise level and the minimum values of the one-point specification of the Markov random field. The case in which there is phase transition is addressed in the frame of the ferromagnetic Ising model. We prove that the existence of infinite interaction neighborhoods depends on the phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanostructured Pb0.90Ba0.10Zr0.40Ti0.60O3 dense ceramics presenting an average grain size of 62 +/- 5 nm was prepared by the polymeric precursor method and using the spark plasma sintering technique. The dielectric permittivity curves versus temperature exhibit broad anomaly, indicative of a diffuse phase transition. This result can be explained by the spread of Curie temperatures which are expected to depend on the degree of tetragonality related to the grain size distribution. A pronounced decrease in the maximum of the dielectric permittivity value is attributed to the existence of a large amount of grain boundaries which are non-ferroelectric regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two versions of the threshold contact process ordinary and conservative - are studied on a square lattice. In the first, particles are created on active sites, those having at least two nearest neighbor sites occupied, and are annihilated spontaneously. In the conservative version, a particle jumps from its site to an active site. Mean-field analysis suggests the existence of a first-order phase transition, which is confirmed by Monte Carlo simulations. In the thermodynamic limit, the two versions are found to give the same results. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cellular membranes have relevant roles in processes related to proteases like human kallikreins and cathepsins. As enzyme and substrate may interact with cell membranes and associated co-factors, it is important to take into account the behavior of peptide substrates in the lipid environment. In this paper we report an study based on energy transfer in two bradykinin derived peptides labeled with the donor-acceptor pair Abz/Eddnp (ortho-aminobenzoic acid/N-[2,4-dinitrophenyl]-ethylenediamine). Time-resolved fluorescence experiments were performed in phosphate buffer and in the presence of large unilamelar vesicles of phospholipids, and of micelles of sodium dodecyl sulphate (SDS). The decay kinetics were analyzed using the program CONTIN to obtain end-to-end distance distribution functions f(r). Despite of the large difference in the number of residues the end-to-end distance of the longer peptide (9 amino acid residues) is only 20 % larger than the values obtained for the shorter peptide (5 amino acid residues). The proline residue, in position 4 of the bradykinin sequence promotes a turn in the longer peptide chain, shortening its end-to-end distance. The surfactant SDS has a strong disorganizing effect, substantially broadening the distance distributions, while temperature increase has mild effects in the flexibility of the chains, causing small increase in the distribution width. The interaction with phospholipid vesicles stabilizes more compact conformations, decreasing end-to-end distances in the peptides. Anisotropy experiments showed that rotational diffusion was not severely affected by the interaction with the vesicles, suggesting a location for the peptides in the surface region of the bilayer, a result consistent with small effect of lipid phase transition on the peptides conformations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the effects of Ohmic, super-Ohmic, and sub-Ohmic dissipation on the zero-temperature quantum phase transition in the random transverse-field Ising chain by means of an (asymptotically exact) analytical strong-disorder renormalization-group approach. We find that Ohmic damping destabilizes the infinite-randomness critical point and the associated quantum Griffiths singularities of the dissipationless system. The quantum dynamics of large magnetic clusters freezes completely, which destroys the sharp phase transition by smearing. The effects of sub-Ohmic dissipation are similar and also lead to a smeared transition. In contrast, super-Ohmic damping is an irrelevant perturbation; the critical behavior is thus identical to that of the dissipationless system. We discuss the resulting phase diagrams, the behavior of various observables, and the implications to higher dimensions and experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

5 We employ the circular-polarization-resolved magnetophotoluminescence technique to probe the spin character of electron and hole states in a GaAs/AlGaAs strongly coupled double-quantum-well system. The photoluminescence (PL) intensities of the lines associated with symmetric and antisymmetric electron states present clear out-of-phase oscillations between integer values of the filling factor. and are caused by magnetic-field-induced changes in the population of occupied Landau levels near to the Fermi level of the system. Moreover, the degree of circular polarization of these emissions also exhibits the oscillatory behavior with increasing magnetic field. Both quantum oscillations observed in the PL intensities and in the degree of polarizations may be understood in terms of a simple single-particle approach model. The k . p method was used to calculate the photoluminescence peak energies and the degree of circular polarizations in the double-quantum-well structure as a function of the magnetic field. These calculations prove that the character of valence band states plays an important role in the determination of the degree of circular polarization and, thus, resulting in a magnetic-field-induced change of the polarization sign.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a comprehensive experimental and theoretical investigation of the thermodynamic properties: specific heat, magnetization, and thermal expansion in the vicinity of the field-induced quantum critical point (QCP) around the lower critical field H-c1 approximate to 2 T in NiCl2-4SC(NH2)(2). A T-3/2 behavior in the specific heat and magnetization is observed at very low temperatures at H = H-c1, which is consistent with the universality class of Bose-Einstein condensation of magnons. The temperature dependence of the thermal expansion coefficient at H-c1 shows minor deviations from the expected T-1/2 behavior. Our experimental study is complemented by analytical calculations and quantum Monte Carlo simulations, which reproduce nicely the measured quantities. We analyze the thermal and the magnetic Gruneisen parameters, which are ideal quantities to identify QCPs. Both parameters diverge at H-c1 with the expected T-1 power law. By using the Ehrenfest relations at the second-order phase transition, we are able to estimate the pressure dependencies of the characteristic temperature and field scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a stochastic approach to nonequilibrium thermodynamics based on the expression of the entropy production rate advanced by Schnakenberg for systems described by a master equation. From the microscopic Schnakenberg expression we get the macroscopic bilinear form for the entropy production rate in terms of fluxes and forces. This is performed by placing the system in contact with two reservoirs with distinct sets of thermodynamic fields and by assuming an appropriate form for the transition rate. The approach is applied to an interacting lattice gas model in contact with two heat and particle reservoirs. On a square lattice, a continuous symmetry breaking phase transition takes place such that at the nonequilibrium ordered phase a heat flow sets in even when the temperatures of the reservoirs are the same. The entropy production rate is found to have a singularity at the critical point of the linear-logarithm type.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photoluminescence from individual quantum wells of artificially disordered weakly coupled multi-layers embedded in wide AlGaAs parabolic wells was investigated in a strong magnetic field. We show that the response of the individual wells is very different from the average response of the multi-layers studied by transport measurements and that photoluminescence represents a local probe of the quantum Hall state formed in three-dimensional electron system. The observed magnetic field induced variations of the in-layer electron density demonstrate the formation of a new phase in the quasi-three-dimensional electron system. The sudden change in the local electron density found at the Landau filling factor nu = 1 by both the magneto-transport and the magneto-photoluminescence measurements was assigned to the quantum phase transition. Copyright (C) EPLA, 2012

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The spin-1 anisotropic antiferromagnet NiCl2-4SC(NH2)(2) exhibits a field-induced quantum phase transition that is formally analogous to Bose-Einstein condensation. Here we present results of systematic high-field electron spin resonance (ESR) experimental and theoretical studies of this compound with a special emphasis on single-ion two-magnon bound states. In order to clarify some remaining discrepancies between theory and experiment, the frequency-field dependence of magnetic excitations in this material is reanalyzed. In particular, a more comprehensive interpretation of the experimental signature of single-ion two-magnon bound states is shown to be fully consistent with theoretical results. We also clarify the structure of the ESR spectrum in the so-called intermediate phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper uses Nuclear Magnetic Resonance (NMR) and Differential Scanning Calorimetry (DSC) techniques to study the molecular relaxations and phase transitions in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT), which has been extensively studied as the active thin film in organic devices. Besides the identification of the glass transition, beta relaxation and crystal-to-crystal phase transition, we correlate such phenomena with dielectric and transport mechanisms in diodes with F8BT as the active layer. The beta relaxation has been assigned to a transition at about 210 K measured by H-1 and C-13 solid state NMR, and can be attributed to local motions in the side chains. The glass transition has been detected by DSC and H-1 NMR. Dielectric spectroscopy (DS) carried out at low frequencies on diodes made from F8BT show two peaks which are coincident with the above transitions. This allowed us to correlate the electrical changes in the film with the onset of specific molecular motions. In addition, DS indicates a third peak related with a crystal-to-crystal phase transition. Finally, these transitions were correlated with changes in the carrier mobility recorded in thin films and published recently.