36 resultados para SPIDER-MITES
Costs and benefits of freezing behaviour in the harvestman Eumesosoma roeweri (Arachnida, Opiliones)
Resumo:
Animals present an enormous variety of behavioural defensive mechanisms, which increase their survival, but often at a cost. Several animal taxa reduce their chances of being detected and/or recognized as prey items by freezing (remaining completely motionless) in the presence of a predator. We studied costs and benefits of freezing in immature Eumesosoma roeweri (Opiliones, Sclerosomatidae). Preliminary observations showed that these individuals often freeze in the presence of the syntopic predatory spider Schizocosa ocreata (Araneae, Lycosidae). We verified that harvestmen paired with predators spent more time freezing than when alone or when paired with a conspecific. Then. we determined that predator chemical cues alone did not elicit freezing behaviour. Next, we examined predator behaviour towards moving/non-moving prey and found that spiders attacked moving prey significantly more, suggesting an advantage of freezing in the presence of a predator. Finally, as measure of the foraging costs of freezing, we found that individuals paired with a predator for 2 h gained significantly less weight than individuals paired with a conspecific or left alone. Taken together, our results suggest that freezing may protect E. roeweri harvestmen from predatory attacks by wolf spiders, but at the cost of reduced food and/or water intake. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Stereotyped behaviors have been routinely used as characters for phylogeny inference, but the same cannot be said of the plastic aspects of performance, which routinely are taken as a result of ecological processes. In this paper we examine the evolution of one of these plastic behavioral phenotypes, thus fostering a bridge between ecological and evolutionary processes. Foraging behavior in spiders is context dependent in many aspects, since it varies with prey type and size, spider nutritional and developmental state, previous experience and, in webweavers, is dependent on the structure of the web. Reeling is a predatory tactic typical of cobweb weavers (Theridiidae), in which the spider moves the prey toward her by pulling the capture thread (gumfoot) to which it is adhered. Predatory reeling is dependent on the gumfoot for its expression, and has not been previously reported in orbweavers. In order to investigate the evolution of this web dependent behavior, we built artificial, pseudogumfoot lines in orbwebs and registered parameters of the predatory tactics in this modified web. Aspects of the predatory tactics of 240 individuals (12 species in 4 families) were measured, and the resulting data were optimized on the phylogeny of Orbiculariae. All species perform predatory reeling with the pseudogumfoot lines. Thus, predatory reeling is homologous for the whole Orbiculariae group. In nature, holes made by insects in ecribellate orbs produce pseudogumfoot lines (similar to out experimentally modified webs), and thus reeling occurred naturally in ecribellates. Nevertheless, outside lab conditions, predatory reeling does not occur among cribellate orbweavers, so that this behavior could not have been selected for in the cribellate ancester of orbweavers. Cribellate spiders are flexible enough as to present novel and adaptive predatory responses (reeling) even when exposed for the first time to conditions outside their usual environment. Thus, the evolution of reeling suggests and alternative mechanism for the production of evolutionary novelties; that is, the exploration of unusual ecological conditions and of the regular effects these abnormal conditions have on phenotype expression.
Resumo:
Preliminary observations of the harvestman Leiobunum vittatum found that individuals rub their bodies against the substrate, presenting the possibility of chemical marking. To determine whether or not L. vittatum individuals can detect substrate-borne chemical cues, we compared responses of L. vittatum males and females to substrate-borne male and female cues. We found that individuals of L. vittatum do respond to conspecific cues and that their responses are sex-specific. In response to substrate-borne conspecific cues, male L. vittatum spent more time, engaged in more scraping with their sensory legs I, and engaged in pedipalpal tapping more often in the presence versus absence of conspecific cues (male and female equally). Furthermore, in the presence of conspecific cues, males engaged in two behaviors never observed in females-(a) "fast approach" and (b) "jerking", the latter of which was never observed in the presence of cricket cues. In contrast to males, females did not spend more time on conspecific cues, but did spend more time tapping their pedipalps in the presence of male vs female cues, suggesting an ability to distinguish between them. A final experiment explored the possibility that females could discriminate among males of varying histories of agonistic interactions based upon their chemical cues. We found no support for this hypothesis. Our results demonstrate that L. vitattum do respond to conspecific cues, and introduce the possibility that intraspecific communication may be mediated in part by chemical cues.
Resumo:
We investigated the possibility of reproductive interference between two sibling spider species, Paratrechalea azul and Paratrechalea ornata, which occur syntopically and reproduce synchronously. Males of both species offer a nuptial gift composed of prey wrapped in silk to females. Through laboratory experiments, we evaluated possible asymmetries in the outcome of heterospecific encounters between males and females, and investigated whether chemical signalling could function as a premating barrier between the two species. Males of P. azul were unable to discriminate conspecific from heterospecific female draglines, which resulted in wasted time and energy in nuptial gift construction. Males of P. ornata incurred a higher cost for discrimination mistakes because most of them were attacked by heterospecific females; 95% lost the nuptial gift upon the attack and 33% were preyed upon. This pattern is probably a consequence of differences in body size between males and females of each species. Both species showed erroneous female choice, but only P. ornata females courted heterospecific males, which are considerably larger than conspecific males and may resemble high-quality mating partners. Males of P. ornata also made discrimination mistakes, but at a much lower frequency compared to P. azul males. The selective pressure for precise recognition of conspecific female signs is probably stronger on P. ornata males because misdirected courtship may increase their chances of encountering predatory heterospecific females. This study provides the first detailed evidence of reproductive interference between two reproductively isolated spider species, showing that the costs paid by individuals of different sexes and different species are highly asymmetric. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
The present study describes different preimaginal stages of Trypoxylon rogenhoferi examined by Scanning Electron Microscopy (SEM) and compares the results with observations on closely related species. Some notes on the nesting habits of this species, including their spider prey, nest parasites, and development time are provided. In short, T. rogenhoferi proved quite similar to the previous report on T. albitarse although SEM images are rarely presented in such descriptions. In fact the present study emphasized the importance of SEM images to describe fine morphological details that can be useful characters for taxonomic and phylogenetic studies. Images of some earlier development stages (first and second larval instar and egg) are presented for the first time, and compared with the few available data from other hymenopterans.
Resumo:
Gomesin (Gm) was the first antimicrobial peptide (AMP) isolated from the hemocytes of a spider, the Brazilian mygalomorph Acanthoscurria gomesiana. We have been studying the properties of this interesting AMP, which also displays anticancer, antimalarial, anticryptococcal and anti-Leishmania activities. In the present study, the total syntheses of backbone-cyclized analogues of Gm (two disulfide bonds), [Cys(Acm)2,15]-Gm (one disulfide bond) and [Thr2,6,11,15,d-Pro9]-Gm (no disulfide bonds) were accomplished, and the impact of cyclization on their properties was examined. The consequence of simultaneous deletion of pGlu1 and Arg16-Glu-Arg18-NH2 on Gm antimicrobial activity and structure was also analyzed. The results obtained showed that the synthetic route that includes peptide backbone cyclization on resin was advantageous and that a combination of 20% DMSO/NMP, EDC/HOBt, 60?degrees C and conventional heating appears to be particularly suitable for backbone cyclization of bioactive peptides. The biological properties of the Gm analogues clearly revealed that the N-terminal amino acid pGlu1 and the amidated C-terminal tripeptide Arg16-Glu-Arg18-NH2 play a major role in the interaction of Gm with the target membranes. Moreover, backbone cyclization practically did not affect the stability of the peptides in human serum; it also did not affect or enhanced hemolytic activity, but induced selectivity and, in some cases, discrete enhancements of antimicrobial activity and salt tolerance. Because of its high therapeutic index, easy synthesis and lower cost, the [Thr2,6,11,15,d-Pro9]-Gm analogue remains the best active Gm-derived AMP developed so far; nevertheless, its elevated instability in human serum may limit its therapeutic potential. Copyright (c) 2012 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Little has been published about the phytoseiid mite fauna of Thailand. This paper presents information about the morphology and distribution of phytoseiid mites collected in Thailand between 1991 and 2011 on different plant species, a list of the species presently known from that country, and a key for their identification. Twenty six species belonging to 11 genera were collected and identified in this study, six of which are reported for the first time from Thailand. In total, 38 species of phytoseiid species of 13 genera are reported, 29 of Amblyseiinae, seven of Phytoseiinae and two of Typhlodrominae.
Resumo:
Gamasiphis Berlese is one of the most diverse genera of Ologamasidae, with 68 described species, corresponding to about 15% of the species of the family. Until now, a single species of this genus was known from Brazil. Gamasiphis salvadori sp. nov., Gamasiphis flechtmanni sp. nov. and Gamasiphis edmilsoni sp. nov. are described based on the morphology of adult females and males collected from litter and soil in Piracicaba, Sao Paulo State, Brazil. The holotype of Gamasiphis plenosetosus Karg, 1994 was examined, given its close similarity with the latter species, and complementary morphological information about it is provided. A key for the separation of females of the 60 recognizable world species of Gamasiphis is provided.
Resumo:
The coconut mite, Aceria guerreronis Keifer, is one of the main pests of coconut palms (Cocos nucifera) in northeastern Brazil. The objective of this study was to evaluate the levels of the coconut mite and other mites on coconut palms in the state of So Paulo and to estimate the possible role of predatory mites in the control of this pest. The effect of cultivated genotypes and sampling dates on the mite populations was also estimated. We sampled attached fruits, leaflets, inflorescences, and fallen fruits. The coconut mite was the main phytophagous mite found on attached and fallen fruits, with average densities of 110.0 and 20.5 mites per fruit, respectively. The prevalent predatory mites on attached and fallen fruits were Proctolaelaps bulbosus Moraes, Reis & Gondim Jr. and Proctolaelaps bickleyi (Bram), both Melicharidae. On leaflets, the tenuipalpids Brevipalpus phoenicis (Geijsks) and Tenuipalpus coyacus De Leon and the tetranychid Oligonychus modestus (Banks) were the predominant phytophagous mites. On both leaflets and inflorescences, the predominant predatory mites belonged to the Phytoseiidae. Neoseiulus baraki (Athias-Henriot) and Neoseiulus paspalivorus (De Leon), predators widely associated with the coconut mite in northeastern Brazil and several other countries, were not found. The low densities of the coconut mite in So Paulo could be related to prevailing climatic conditions, scarcity of coconut plantations (hampering the dispersion of the coconut mite between fields), and to the fact that some of the genotypes cultivated in the region are unfavorable for its development.
Resumo:
Five species of Ctenus from the Amazon basin are redescribed: C. delesserti (Caporiacco, 1947), C. falconensis Schenkel, 1953, C. nigritus F.O. Pickard-Cambridge, 1897, C. serratipes F.O. Pickard-Cambridge, 1897 and C. sigma (Schenkel, 1953). Three new synonymies are proposed: Ctenus fulvipes Caporiacco, 1947, C. itatiayaeformis Caporiacco, 1955 and C. scenicus Caporiacco, 1947 with C. serratipes. The female of Ctenus nigritus is described for the first time. The distributional ranges of Ctenus nigritus and C. serratipes are extended. We also present distributional maps of the five redescribed species.
Resumo:
The genera Interrhodeus Karg, Pennarhodeus Karg and Poropodalius Karg are redescribed on the basis of one species of Interrhodeus, four species of Pennarhodeus and five species of Poropodalius, including the type species of each genus. All species are redescribed on the basis of the type specimens, and keys for the separation of the species of the latter two genera are provided. Re-examination of these species shows that these three genera are correctly placed in the family Rhodacaridae.
Resumo:
The dispersal of plant-feeding mites can occur involuntarily, through transportation of infested plant parts, or voluntarily, by walking to new plant parts or to suitable spots where biotic (phoresis) or abiotic (wind, agricultural tools, etc.) factors carry them over long distances. Elucidating the dispersal mechanisms of the coconut mite, Aceria guerreronis Keifer, is important for understanding the process of colonization of new fruits of a same or different plants, essential for the improvement of control strategies of this serious coconut pest. Thus, the objective of this work was to investigate the voluntary dispersal mechanisms of this mite. The hypothesis that the coconut mite disperses by walking, phoresis or wind were tested. The coconut mite was shown to be able to walk short distances between fruits of the same bunch or between bunches of the same plant. Phoresis on insects of the orders Hymenoptera (Apidae), Coleoptera (Curculionidae) and Lepidoptera (Phycitidae) was evaluated in the laboratory and in the field. Although in the laboratory mites were shown to be able to climb onto honeybees, field investigations failed to show these insects as important carriers of the pest, corroborating findings of previous works; however, both laboratory and field investigations suggested the curculionid Parisoschoenus obesulus Casey to be able to transport the coconut mite between plants. Similarly, laboratory and field investigations suggested wind to be important in the dispersal of the coconut mite between plants.
Resumo:
The blattisociid mite Lasioseius floridensis Berlese was found associated with the broad mite, Polyphagotarsonemus latus (Banks), on gerbera leaves in Mogi das Cruzes, State of Sao Paulo, Brazil. Blattisociid mites are not common on aerial plant parts, except under high air humidity levels. Some Lasioseius species have been mentioned as effective control agents of rice pest mites, but nothing is known about the biology of L. floridensis. The objective of this study was to evaluate whether the observed co-occurrence of L. floridensis and P. latus was just occasional or whether the latter could be important as food source for the former, assumed by laboratory evaluation of the ability of the predator to maintain itself, reproduce and develop on that prey. Biological parameters of L. floridensis were compared when exposed to P. latus and to other items as food. The study showed that mating is a pre-requisite for L. floridensis to oviposit and that oviposition rate was much higher on the soil nematode Rhabditella axei (Cobbold) (Rhabditidae) than on P. latus. Ovipositon on the acarid mite Tyrophagus putrescentiae (Schrank) was about the same as on P. latus, but it was nearly zero when the predator was fed the fungi Aspergillus flavus Link or Penicillium sp., or cattail (Typha sp.) pollen. Survivorship was higher in the presence of pollen and lower in the presence of A. flavus or Penicillium sp. than in the absence of those types of food. Life table parameters indicated that the predator performed much better on R. axei than on P. latus. To evaluate the potential effect of L. floridensis as predator of P. latus, complementary studies are warranted to determine the frequency of migration of L. floridensis to aerial plant parts, when predation on P. latus could occur.
Resumo:
Several predatory mites have been found in association with the coconut mite, Aceria guerreronis Keifer, in northeast Brazil. However, the latter still causes damage to coconut in that region. The objectives of this work were to compare the frequencies of occurrence of Neoseiulus (Phytoseiidae) and Proctolaelaps (Melicharidae) species on standing and aborted coconuts in coastal Pernambuco State, northeast Brazil and to analyze their possible limitations as control agents of the coconut mite, based on evaluations of the restrictions they may have to access the microhabitat inhabited by the pest and their functional and reproductive responses to increasing densities of the latter. Neoseiulus baraki (Athias-Henriot) was found mostly on standing coconuts whereas Proctolaelaps bickleyi (Bram) was found mostly on aborted coconuts. Measurements of the entrance to the microhabitat occupied by the coconut mite, between the bracts and the subjacent fruit surface, showed that this different pattern of predator prevalence could be related to predator sizes, although other environmental factors could not be disregarded. Progressively higher predation rate of N. baraki was observed up to an experimental density that corresponded to 1,200 coconut mites per fruit, which is close to the average number determined in northeast Brazil, reducing slightly afterwards. Predation rate of P. bickleyi reduced consistently but slightly with increasing prey densities, but in absolute values, rates were always much higher than determined for N. baraki. The excessively high killing capacity of P. bickleyi, probably related to its high feeding requirement, may be detrimental in terms of stability. In fact, such high requirement for food suggests that P. bickleyi might not have a strong relation with the coconut mite and that the latter may not be its main food source under natural conditions. It is concluded that body sizes of both predators and the exceedingly high feeding requirement of P. bickleyi may limit their performance as control agents of the coconut mite.
Resumo:
A new eriophyoid mite genus and species, Gymnaceria cupuassu n. sp. et n. gen. (Acari: Eriophyidae: Eriophyinae: Aceriini), is described from young fruits and other plant parts of the cupuacu tree, Theobroma grandiflorum (Willd. Ex Spreng.) K. Schum. (Sterculiaceae), from the State of Bahia, northeastern Brazil. No visible damage symptoms were observed.