52 resultados para Root Canal Preparation
Resumo:
The aim of this study was to compare two methods of assessing apical transportation in curved canals after rotary instrumentation, namely, cross-sections and micro-computed tomography (mu CT). Thirty mandibular molars were divided into two groups and prepared according to the requirements of each method. In G1 (cross-sections), teeth were embedded in resin blocks and sectioned at 2.0, 3.5, and 5.0 mm from the anatomic apex. Pre- and postoperative sections were photographed and analyzed. In G2 (mu CT), teeth were embedded in a rubber-base impression material and scanned before and after instrumentation. Mesiobuccal canals were instrumented with the Twisted File (TF) system (SybronEndo, Orange, USA), and mesiolingual canals, with the Endo Sequence (ES) system (Brasseler, Savannah, USA). Images were reconstructed, and sections corresponding to distances 2.0, 3.5, and 5.0 mm from the anatomic apex were selected for comparison. Data were analyzed using Mann-Whitney's test at a 5% significance level. The TF and ES instruments produced little deviation from the root canal center, with no statistical difference between them (P > 0.05). The canal transportation results were significantly lower (0.056 mm) in G2 than in G1 (0.089 mm) (p = 0.0012). The mu CT method was superior to the cross-section method, especially in view of its ability to preserve specimens and provide results that are more closely related to clinical situations.
Resumo:
Scanning electron microscopy (SEM) can be used to analyze the presence of debris and smear layer on the internal walls of root canal. This study evaluated the debris and smear removal in flattened root canals using SEM after use of different irrigant agitation protocols. Fifty mandibular incisors were distributed into five groups (n = 10) according to the irrigant agitation protocol used during chemomechanical preparation: conventional syringe irrigation with NaviTip needle (no activation), active scrubbing of irrigant with brush-covered NaviTip FX needle, manual dynamic irrigation, continuous passive ultrasonic irrigation, and apical negative pressure irrigation (EndoVac system). Canals were irrigated with 5 mL of 2.5% NaOCl at each change of instrument and received a final flush with 17% EDTA for 1 min. After instrumentation, the roots were split longitudinally and SEM micrographs at x 100 and x 1,000 were taken to evaluate the amount of debris and smear layer, respectively, in each third. Data were analyzed by KruskalWallis and Dunn's post-hoc tests (a = 5%). Manual dynamic activation left significantly (p < 0.05) more debris inside the canals than the other protocols, while ultrasonic irrigation and EndoVac were the most effective (p < 0.05) for debris removal. Regarding the removal of smear layer, there was no statistically significant difference (p > 0.05) either among the irrigant agitation protocols or between the protocolcanal third interactions. Although none of the irrigant agitation protocols completely removed debris and smear layer from flattened root canals, the machine-assisted agitation systems (ultrasound and EndoVac) removed more debris than the manual techniques. Microsc. Res. Tech. 75:781790, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
The effect of solutions of 0.2% chitosan, 15% EDTA and 10% citric acid on the microhardness of root dentin was evaluated comparatively in this study. Thirteen sound human maxillary central incisors were selected and decoronated at the cementoenamel junction. Ten roots were set into rapid polymerization acrylic resin and the root/resin block was fitted to the cutting machine to obtain slices from the cervical third. The first slice was discarded and the second slice was divided into four quadrants. Each quadrant was used to construct a sample, so that 4 specimens were obtained from each root slice, being one for each chelating solution to be tested: 15% EDTA, 10% citric acid, 0.2% chitosan and distilled water (control). The specimens were exposed to 50 μL of the solution for 5 min, and then washed in distilled water. A microhardness tester (Knoop hardness) with a 10 g load was used for 15 s. Data were analyzed statistically by one-way ANOVA and Tukey-Kramer test (α=0.05). The other 3 roots had the canals instrumented and irrigated at the end of the biomechanical preparation with the test solutions, and then examined by scanning electron microscopy (SEM) for qualitative analysis. All solutions reduced the microhardness of root dentin in a way that was statistically similar to each other (p>0.05) but significantly different from the control (p>0.05). The SEM micrographs showed that the three solutions removed smear layer from the middle third of the root canal. In conclusion, 0.2% chitosan, 15% EDTA and 10% citric acid showed similar effects in reducing dentin microhardness.
Resumo:
Purpose: To investigate the periapical tissue response of 4 different retrograde root-filling materials, ie, intermediate restorative material, thermoplasticized gutta-percha, reinforced zinc oxide cement (Super-EBA), and mineral trioxide aggregate (MTA), in conjunction with an ultrasonic root-end preparation technique in an animal model. Materials and Methods: Vital roots of the third and fourth right mandibular premolars in 6 healthy mongrel dogs were apicectomized and sealed with 1 of the materials using a standardized surgical procedure. After 120 days, the animals were sacrificed and the specimens were analyzed radiologically, histologically, and scanning electron microscopically. The Fisher exact test was performed on the 2 outcome values. Results: Twenty-three sections were analyzed histologically. Evaluation showed better re-establishment of the periapical tissues and generally lower inflammatory infiltration in the sections from teeth treated with the intermediate restorative material and the MTA. New root cement on the resected dentin surfaces was seen on all sections regardless of the used material. New hard tissue formation, directly on the surface of the material, was seen only in the MTA sections. There was no statistical difference in outcome among the tested materials. Conclusions: The results from this dog model favor the intermediate restorative material and MTA as retrograde fillings when evaluating the bone defect regeneration. MTA has the most favorable periapical tissue response when comparing the biocompatibility of the materials tested. (C) 2012 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 70:2041-2047, 2012
Resumo:
Objective: The aim of this study was to compare the correspondence between gap formation and apical microleakage in root canals filled with epoxy resin-based (AH Plus) combined or not with resinous primer or with a dimethacrylate-based root canal sealer (Epiphany). Material and Methods: Thirty-nine lower single-rooted human premolars were filled by the lateral condensation technique (LC) and immersed in a 50-wt% aqueous silver nitrate solution at 37 degrees C (24 h). After longitudinal sectioning, epoxy resin replicas were made from the tooth specimens. Both the replicas and the specimens were prepared for scanning electron microscopy (SEM). The gaps were observed in the replicas. Apical microleakage was detected in the specimens by SEM/energy dispersive spectroscopy (SEM/EDS). The data were analyzed statistically using an Ordinal Logistic Regression model and Analysis of Correspondence (alpha=0.05). Results: Epiphany presented more regions containing gaps between dentin and sealer (p<0.05). There was correspondence between the presence of gaps and microleakage (p<0.05). Microleakage was similar among the root-filling materials (p>0.05). Conclusions: The resinous primer did not improve the sealing ability of AH Plus sealer and the presence of gaps had an effect on apical microleakage for all materials.
Resumo:
Dentin wall structural changes caused by 810-nm-diode laser irradiation can influence the sealing ability of endodontic sealers. The objective of this study was to evaluate the apical leakage of AH Plus and RealSeal resin-based sealers with and without prior diode laser irradiation. Fifty-two single-rooted mandibular premolars were prepared and divided into 4 groups, according to the endodontic sealer used and the use or non-use of laser irradiation. The protocol for laser irradiation was 2.5W, continuous wave in scanning mode, with 4 exposures per tooth. After sample preparation, apical leakage of 50% ammoniacal silver nitrate impregnation was analyzed. When the teeth were not exposed to irradiation, the Real Seal sealer achieved the highest scores, showing the least leakage, with significant differences at the 5% level (Kruskal-Wallis test, p = 0.0004), compared with AH Plus. When the teeth were exposed to the 810-nm-diode laser irradiation, the sealing ability of AH Plus sealer was improved (p = 0282). In the Real Seal groups, the intracanal laser irradiation did not interfere with the leakage index, showing similar results in the GRS and GRSd groups (p = 0.1009).
Resumo:
Aim: To assess the influence of cervical preparation on fracture susceptibility of roots. Material and methods: During root canal instrumentation, the cervical portions were prepared with different taper instruments: I: no cervical preparation; II: #30/.08; III: #30/.10; IV: #70/.12. The specimens were sealed with the following filling materials (n = 8), A: unfilled; B: Endofill/gutta-percha; C: AH Plus/gutta-percha; D: Epiphany SE/Resilon. For the fracture resistance test, a universal testing machine was used at 1 mm per minute. Results: anova demonstrated difference (P < 0.05) between taper instruments with a higher value for group I (205.3 +/- 77.5 N) followed by II (185.2 +/- 70.8 N), III (164.8 +/- 48.9 N), and IV (156.7 +/- 41.4 N). There was no difference (P > 0.05) between filling materials A (189.1 +/- 66.3 N), B (186.3 +/- 61.0 N), C (159.7 +/- 69.9 N), and D (176.9 +/- 55.2 N). Conclusions: Greater cervical wear using a #70/.12 file increased the root fracture susceptibility, and the tested filling materials were not able to restore resistance.
Resumo:
Carneiro SMBS, Sousa-Neto MD, Rached-Junior FA, Miranda CES, Silva SRC, Silva-Sousa YTC. Push-out strength of root fillings with or without thermomechanical compaction. International Endodontic Journal, 45, 821828, 2012. Abstract Aim To evaluate the influence of thermomechanical compaction (Taggers hybrid technique THT) on the push-out strength of several root filling materials to root dentine. Methodology Root canals of eighty roots in human canines were prepared with the ProTaper system and filled with one of the following materials, using either lateral compaction (LC) (n = 40) or THT (n = 40): AH Plus/gutta-percha (GP) (n = 10), Sealer 26/GP (n = 10), Epiphany SE/Resilon (n = 10) and Epiphany SE/GP (n = 10). Three 2-mm-thick dentine slices were obtained from each third of each root. The root filling in the first slice was subjected to a push-out test to evaluate the bond strength of the materials to intraradicular dentine. Data (in MPa) were analysed using anova and post hoc Tukeys test (P < 0.05). Failure mode was determined at x25 magnification. The other two slices were prepared for scanning electron microscopy (SEM) to examine the surface of the filling materials. Results Lateral compaction (1.34 +/- 1.14 MPa) was associated with a significantly higher bond strength (P < 0.05) than the THT (0.97 +/- 0.88 MPa). AH Plus/GP (2.23 +/- 0.83 MPa) and Sealer 26/GP (1.86 +/- 0.50 MPa) had significantly higher bond strengths than the other materials and differed significantly from each other (P < 0.05). There was a significant difference (P < 0.05) between the coronal (1.36 +/- 1.15 MPa), middle (1.14 +/- 1.05 MPa) and apical thirds (0.95 +/- 0.83 MPa). Considering the technique and root filling material interaction, AH Plus/GP-LC was associated with the highest mean values (2.65 +/- 0.66 MPa) (P < 0.05). Sealer 26/GP-LC (2.10 +/- 0.46 MPa), AH Plus/GP-THT (1.81 +/- 0.78 MPa) and Sealer 26/GP-TH (1.63 +/- 0.44 MPa) had intermediate values that were not significantly different from each other (P > 0.05). Epiphany SE was associated with the lowest mean values (3.70 +/- 0.86 MPa) (P < 0.05), regardless of the root filling technique and type of solid material (cone). Adhesive failures predominated in the specimens filled with Epiphany SE, whilst mixed and cohesive failures were more frequent in those filled with AH Plus and Sealer 26, regardless of the root filling technique. SEM analysis revealed that LC produced a dense and well-compacted filling whilst the use of a hybrid thermomechanical technique resulted in the solid material (GP or Resilon) intermingled within sealer to form a nonhomogenous mass. Conclusion Lateral compaction was associated with higher bond strengths of the materials to intraradicular dentine than a hybrid technique using thermomechanical compaction. The greatest push-out strengths were obtained when the canals were filled with LC of AH Plus and GP cones.
Resumo:
Objective: The aim of this study was to evaluate the microhardness of radicular dentin after treatment with 980-nm diode laser and different irrigant solutions. Background data: There are few reports of the consequences of diode laser irradiation emitted at 980 nm on the mechanical properties of dentin. Methods: Seventy-two single canal, human canines with complete root formation were randomly distributed among three groups (n = 24), according to the irrigant solution used in the biomechanical preparation: distilled water; 1% NaOCl; and, 1% NaOCl + 17% EDTA. These groups subsequently were divided into three subgroups (n = 8), according to the diode laser parameter: no irradiation (control); 1.5W/100 Hz; and 3.0 W/100 Hz. Laser was applied with helicoidal movements for 20 sec. Roots were sectioned in slices and the fragment corresponding to the middle third was submitted to the microhardness test (KHN) at depths of 30, 90, 150, and 300 mu m. Results: ANOVA and Tukey tests showed that the microhardness of the groups irradiated with 1.5 W/100 Hz (49.7 +/- 11.2) and 3.0W/100 Hz (50.6 +/- 11.9) were statistically similar to each other (p > 0.05) and different (p < 0.05) from the non-irradiated group (45.0 +/- 9.7). Higher microhardness values were obtained at 150 mu m (49.2 +/- 11.0) and 300 mu m (52.3 +/- 11.3) which were similar among themselves and different (p < 0.05) only at the depth of 30 mu m (44.4 +/- 10.5). No differences were found among the irrigant solutions (p > 0.05). Conclusions: The microhardness of the radicular dentin increased after irradiation with 980-nm diode laser.
Resumo:
Introduction: This study aimed to describe the anatomy of mandibular premolars with type IX canal configuration by using micro–computed tomography. Methods: Mandibular premolars with radicular grooves (n = 105) were scanned, and 16 teeth with type IX configuration were selected. Number and location of canals, distances between anatomic landmarks, occurrence of apical delta, root canal fusion, and furcation canals, as well as 2-dimensional (area, perimeter, roundness, major and minor diameters) and 3-dimensional (volume, surface area, and structuremodel index) analysis were performed. Data were statistically compared by using analysis of variance and Kruskal-Wallis tests (a = 0.05). Results: Overall, specimens had 1 root with a main canal that divided into mesiobuccal, distobuccal, and lingual canals at the furcation level. Mean length of the teeth was 22.9 2.06 mm, and the configuration of the pulp chamber was mostly triangle-shaped. Mean distances from the furcation to the apex and cementoenamel junction were 9.14 2.07 and 5.59 2.19 mm, respectively. Apical delta, root canal fusion, and furcation canals were present in 4, 5, and 10 specimens, respectively. No statistical differences were found in the 2-dimensional and 3-dimensional analyses between root canals (P > .05). Conclusions: Type IX configuration of the root canal system was found in 16 of 105 mandibular premolars with radicular grooves. Most of the specimens had a triangle-shaped pulp chamber. Within this anatomic configuration, complexities of the root canal systems such as the presence of furcation canals, fusion of canals, oval-shaped canals in the apical third, small orifices at the pulp chamber level, and apical delta were also observed
Resumo:
Objective: To assess the setting time (ST), flow (FL), radiopacity (RD), solubility (SB) and dimensional change following setting (DC) of different sealers (AH Plus (R), Polifil, Apexit Plus (R), Sealapex (R), Endomethasone (R) and Endofill (R)) according to American National Standards Institute/American Dental Association (ANSI/ADA) Specification 57. Material and methods: Five samples of each material were used for each test. For ST, cast rings were filled with sealers and tested with a Gillmore needle. For FL, the sealer was placed on a glass plate. After 180 s, another plate with 20 g and a load of 100 g were applied on the material, and the diameters of the discs formed were measured. In RD, circular molds were filled with the sealers, radiographed and analyzed using Digora software. For SB, circular molds were filled with the sealers, a nylon thread was placed inside the material and another glass plate was positioned on the set, pressed and stored at 37 degrees C. Samples were weighed, placed in water, dried and reweighed. The water used for SB was analyzed by atomic absorption spectrometry. For DC, circular molds were filled with the sealers, covered by glass plates and stored at 37 degrees C. Samples were measured and stored in water for 30 days. After this period, they were dryed and measured again. Results: Regarding ST, AH Plus (R), Apexit (R) and Endofil (R) sealers are in accordance with ANSI/ADA standards. Endomethasone's manufacturer did not mention the ST; Polifil is an experimental sealer and Sealapex (R) did not set. Considering RD, SB and DC, all sealers were in accordance with ANSI/ADA. The spectrometric analysis showed that a significant amount of K+ and Zn2(+) ions was released from Apexit Plus (R) and Endofill (R), respectively. Conclusion: Except for DC, all other physicochemical properties of the tested sealers conformed to ANSI/ADA requirements.
Resumo:
Purpose: To evaluate the effect of mechanical cycling and cementation strategies on the push-out bond strength between fiber posts and root dentin and the polymerization stresses produced using three resin cements. Materials and Methods: Eighty bovine mandibular teeth were sectioned to a length of 16 mm, prepared to 12 mm, and embedded in self-curing acrylic resin. The specimens were then distributed into 8 groups (n = 10): Gr1 - Scotchbond Multi Purpose + RelyX ARC; Gr2 - Scotchbond Multi Purpose + RelyX ARC + mechanical cycling; Gr3 - AdheSE + Multilink Automix; Gr4 - AdheSE + Multilink Automix + mechanical cycling; Gr5 - phosphoric acid + RelyX U100 (self-adhesive cement); Gr6 - phosphoric acid+ RelyX U100 + mechanical cycling; Gr7 - RelyX U100; Gr8 - RelyX U100 + mechanical cycling. The values obtained from the push-out bond strength test were submitted to two-way ANOVA and Tukey's test (p = 0.05), while the values obtained from the polymerization stress test were subjected to one-way ANOVA and Tukey's test (alpha = 0.05). Results: Mechanical cycling did not affect the bond strength values (p = 0.236), while cementation strategies affected the push-out bond strength (p < 0.001). Luting with RelyX U100 and Scotch Bond Multi Purpose + RelyX ARC yielded higher push-out bond strength values. The polymerization stress results were affected by the factor "cement" (p = 0.0104): the self-adhesive cement RelyX U100 exhibited the lowest values, RelyX ARC resulted in the highest values, while Multi link Automix presented values statistically similar to the other two cements. Conclusion: The self-adhesive cement appears to be a good alternative for luting fiber posts due to the high push-out bond strengths and lower polymerization stress values.
Resumo:
Aim To evaluate the residual biovolume of live bacterial cells, the mean biofilm thickness and the substratum coverage found in mixed biofilms treated with different endodontic irrigant solutions. Methodology Twenty-five bovine dentine specimens were infected intraorally using a removable orthodontic device. Five samples were used for each irrigant solution: 2% chlorhexidine, 1% sodium hypochlorite (NaOCl), 10% citric acid, 17% EDTA and distilled water. The solutions were used for 5 min. The samples were stained using the Live/Dead technique and evaluated using a confocal microscope. Differences in the amount of total biovolume (mu m3), number of surviving cells (mu m3), mean biofilm thickness (mu m) and substratum coverage (%) of the treated biofilms were determined using nonparametric statistical tests (P < 0.05). Results Similar values of biovolume total, biovolume of live subpopulations and substratum coverage were found in 2% chlorhexidine, 10% citric acid, 17% EDTA and distilled water-treated biofilms (P > 0.05). The lower values of the studied parameters were found in 1% NaOCl-treated dentine (P < 0.05) with the exception of the mean biofilm height criteria that did not reveal significant differences amongst the irrigant solutions (P > 0.05). Conclusions One per cent sodium hypochlorite was the only irrigant that had a significant effect on biofilm viability and architecture.
Resumo:
The recent addition of endoscopy in dental practice has enabled clinicians to have an excellent view of the operative field, yielding highly successful visualization of anatomical structures that are difficult to access, both in oral surgery and endodontics. The purpose of this report is to provide an in vitro macroscopic, radiographic, and endoscopic description of the anatomic variation of the roots of maxillary and mandibular first premolars in the same patient. A 22-year-old patient was referred by an orthodontist for the extraction of all the first premolars. Once extracted, the premolars were examined macroscopically and then analyzed radiographically after trepanation and filled root canal systems. Subsequently, a diaphanization process was carried out and the samples were sectioned at the middle and apical third for observation by endoscope. It was found that both the maxillary first premolars had three roots, and mandibular first premolars had two roots, all with complete root formation. Apical deltas or accessory canals were not identified in the radiographic images; however, through endoscope at the middle third, it was possible to observe an accessory canal to the first maxillary and mandibular right premolars. Thus, it can be concluded that the view through the endoscope allows better identification of accessory canals than X-rays.
Resumo:
Aim To compare the changes in the surface structure and elemental distribution, as well as the percentage of ion release, of four calcium silicate-containing endodontic materials with a well-established epoxy resin-based sealer, submitted to a solubility test. Methodology Solubility of AH Plus, iRoot SP, MTA Fillapex, Sealapex and MTA-Angelus (MTA-A) was tested according to ANSI/ADA Specification 57. The deionized water used in the solubility test was submitted to atomic absorption spectrophotometry to determine and quantify Ca2+, Na+, K+, Zn2+, Ni2+ and Pb2+ ions release. In addition, the outer and inner surfaces of nonsubmitted and submitted samples of each material to the solubility test were analysed by means of scanning electron microscopy and energy-dispersive spectroscopy (SEM/EDX). Statistical analysis was performed by using one-way anova and Tukeys post hoc tests (a = 0.05). Results Solubility results, in percentage, sorted in an increasing order were -1.24 +/- 0.19 (MTA-A), 0.28 +/- 0.08 (AH Plus), 5.65 +/- 0.80 (Sealapex), 14.89 +/- 0.73 (MTA Fillapex) and 20.64 +/- 1.42 (iRoot SP). AH Plus and MTA-A were statistically similar (P > 0.05), but different from the other materials (P < 0.05). High levels of Ca2+ ion release were observed in all groups except AH Plus sealer. MTA-A also had the highest release of Na2+ and K+ ions. Zn+2 ion release was observed only with AH Plus and Sealapex sealers. After the solubility test, all surfaces had morphological changes. The loss of matrix was evident and the filler particles were more distinguishable. EDX analysis displayed high levels of calcium and carbon at the surface of Sealapex, MTA Fillapex and iRoot SP. Conclusions AH Plus and MTA-A were in accordance with ANSI/ADAs requirements regarding solubility whilst iRoot SP, MTA Fillapex and Sealapex did not fulfil ANSI/ADAs protocols. High levels of Ca2+ ion release were observed in all materials except AH Plus. SEM/EDX analysis revealed that all samples had morphological changes in both outer and inner surfaces after the solubility test. High levels of calcium and carbon were also observed at the surface of all materials except AH Plus and MTA-A.