17 resultados para Robust Convergence
Resumo:
This work proposes a computational tool to assist power system engineers in the field tuning of power system stabilizers (PSSs) and Automatic Voltage Regulators (AVRs). The outcome of this tool is a range of gain values for theses controllers within which there is a theoretical guarantee of stability for the closed-loop system. This range is given as a set of limit values for the static gains of the controllers of interest, in such a way that the engineer responsible for the field tuning of PSSs and/or AVRs can be confident with respect to system stability when adjusting the corresponding static gains within this range. This feature of the proposed tool is highly desirable from a practical viewpoint, since the PSS and AVR commissioning stage always involve some readjustment of the controller gains to account for the differences between the nominal model and the actual behavior of the system. By capturing these differences as uncertainties in the model, this computational tool is able to guarantee stability for the whole uncertain model using an approach based on linear matrix inequalities. It is also important to remark that the tool proposed in this paper can also be applied to other types of parameters of either PSSs or Power Oscillation Dampers, as well as other types of controllers (such as speed governors, for example). To show its effectiveness, applications of the proposed tool to two benchmarks for small signal stability studies are presented at the end of this paper.
Resumo:
The growing demands for industrial products are imposing an increasingly intense level of competitiveness on the industrial operations. In the meantime, the convergence of information technology (IT) and automation technology (AT) is showing itself to be a tool of great potential for the modernization and improvement of industrial plants. However, for this technology fully to achieve its potential, several obstacles need to be overcome, including the demonstration of the reasoning behind estimations of benefits, investments and risks used to plan the implementation of corporative technology solutions. This article focuses on the evolutionary development of planning and adopting processes of IT & AT convergence. It proposes the incorporation of IT & AT convergence practices into Lean Thinking/Six Sigma, via the method used for planning the convergence of technological activities, known as the Smarter Operation Transformation (SOT) methodology. This article illustrates the SOT methodology through its application in a Brazilian company in the sector of consumer goods. In this application, it is shown that with IT & AT convergence is possible with low investment, in order to reduce the risk of not achieving the goals of key indicators.