19 resultados para Reverse charge


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of the charge-carrier photogeneration processes in poly(2,5-bis(3',7'-dimethyl-octyloxy)-1,4-phenylene vinylene) (OC(1)OC10-PPV) has been analyzed by the spectral response of the photocurrent of devices in ITO/polymer/Al structures. The symbatic response of the photocurrent action spectra of the OC1OC10-PPV devices, obtained for light-excitation through the ITO electrode and for forward bias, has been fitted using a phenomenological model which considers that the predominant transport mechanism under external applied electric field is the drift of photogenerated charge-carriers, neglecting charge-carrier diffusion. The proposed model takes into account that charge-carrier photogeneration occurs via intermediate stages of bounded pairs (excitonic states), followed by dissociation processes. Such processes result in two different contributions to the photoconductivity: The first one, associated to direct creation of unbound polaron pairs due to intrinsic photoionization; and the second one is associated to secondary processes like extrinsic photoinjection at the metallic electrodes. The results obtained from the model have shown that the intrinsic component of the photoconductivity at higher excitation energies has a considerably higher efficiency than the extrinsic one, suggesting a dependence on the photon energy for the efficiency of the photogeneration process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In molecular and atomic devices the interaction between electrons and ionic vibrations has an important role in electronic transport. The electron-phonon coupling can cause the loss of the electron's phase coherence, the opening of new conductance channels and the suppression of purely elastic ones. From the technological viewpoint phonons might restrict the efficiency of electronic devices by energy dissipation, causing heating, power loss and instability. The state of the art in electron transport calculations consists in combining ab initio calculations via Density Functional Theory (DFT) with Non-Equilibrium Green's Function formalism (NEGF). In order to include electron-phonon interactions, one needs in principle to include a self-energy scattering term in the open system Hamiltonian which takes into account the effect of the phonons over the electrons and vice versa. Nevertheless this term could be obtained approximately by perturbative methods. In the First Born Approximation one considers only the first order terms of the electronic Green's function expansion. In the Self-Consistent Born Approximation, the interaction self-energy is calculated with the perturbed electronic Green's function in a self-consistent way. In this work we describe how to incorporate the electron-phonon interaction to the SMEAGOL program (Spin and Molecular Electronics in Atomically Generated Orbital Landscapes), an ab initio code for electronic transport based on the combination of DFT + NEGF. This provides a tool for calculating the transport properties of materials' specific system, particularly in molecular electronics. Preliminary results will be presented, showing the effects produced by considering the electron-phonon interaction in nanoscale devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discotic molecules comprising a rigid aromatic core and flexible side chains have been promisingly applied in OLEDs as self-organizing organic semiconductors. Due to their potentially high charge carrier mobility along the columns, device performance can be readily improved by proper alignment of columns throughout the bulk. In the present work, the charge mobility was increased by 5 orders of magnitude due to homeotropic columnar ordering induced by the boundary interfaces during thermal annealing in the mesophase. State-of-the-art diodes were fabricated using spin-coated films whose homeotropic alignment with formation of hexagonal germs was observed by polarizing optical microscopy. The photophysical properties showed drastic changes at the mesophase-isotropic transition, which is supported by the gain of order observed by X-ray diffraction. The electrical properties were investigated by modeling the current−voltage characteristics by a space-charge-limited current transport with a field dependent mobility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The comprehensive control of morphology and structure is of extreme importance in semiconducting polymers when used as active layers in optoelectronic devices. In the work reported here, a systematic investigation of the structural and dynamical properties of poly(9,9-di-n-octyl-fluorene-alt-benzothiadiazole), known as F8BT, and their correlation with electrical properties is presented when the material is used as an active layer in optoelectronic devices. By means of X-ray diffraction, one observes that in thick layer films (thickness of about 4 μm) grown by drop-cast deposition, a solvent induced crystalline phase exists which evolves to a stable phase as the temperature is raised. This was not observed in thin films (thickness of about 250 nm) prepared by spin-coating within the investigated temperature range. By modeling the current-voltages characteristics of both thick and thin film devices, important information on the influence of crystallization on the trapping states could be drawn. Furthermore, the temperature dependence of the charge carrier mobility was found to be closely related to that of the molecular relaxation processes. The understanding of the nature of such molecular relaxations, measured by solid-state nuclear magnetic resonance methods, allows one to understand the importance of molecular relaxations and microstructure changes on the trap states of the system.