18 resultados para Rare earth metals.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The persistent luminescence of CdSiO3:Tb3+ was investigated with photoluminescence, thermoluminescence (TL), synchrotron radiation X-ray absorption (XANES and EXAFS) and UV-VUV spectroscopies. Only the typical intraconfigurational 4f(8)-4f(8) transitions of the Tb3+ ion were observed with no traces of band emission in either the conventional UV excited or persistent luminescence spectra. The trap structure from TL with three traps from 0.65 to 0.85 eV is ideal for room-temperature persistent luminescence similar to, e.g., Sr2MgSi2O7:Eu2+,R3+. Despite the rather low band gap energy, 5.28 eV, the persistent luminescence from Tb3+ is produced only under UV irradiation due to the inauspicious position of the F-7(6) ground level deep in the band gap of CdSiO3. This confirms the role of electrons as the charge carriers in the mechanism of Tb3+ persistent luminescence. The XANES spectra indicated the presence of only the trivalent Tb3+ species, thus excluding the direct Tb3+ -> Tb-IV oxidation during the charging process of persistent luminescence. Eventually, a unique persistent luminescence mechanism for Tb3+ in CdSiO3 was constructed based on the comprehensive experimental data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gameleira lamprophyres are dykes and mafic microgranular enclaves associated with the shoshonitic Gameleira monzonite. This association belongs to the Paleoproterozoic alkaline magmatism from Serrinha nucleus, northeast Brazil. The liquidus paragenesis is diopside, pargasite, apatite and mica. Reverse zoning was identified in the groundmass alkali feldspar and was related to the undercooling of lamprophyric magma during the emplacement, with high growth rate of pargasite/edenite inducing disequilibrium between feldspars and liquid. Chemical data indicate that the lamprophyres are basic rocks (SiO2 < 48 wt%), with alkaline character (Na2O + K2O > 3 wt%) and potassic signature (K2O/Na2O ≈ 2). High contents of MgO and Cr are consistent with a signature of a primary liquid, and such concentrations, as well as Al, K, P, Ba, Ni- and light rare earth elements, are consistent with an olivine-free metasomatic mantle source enriched in amphibole, clinopyroxene and apatite. By contrast, the ultrapotassic lamprophyres from Morro do Afonso, contemporaneous alkaline ultrapotassic magmatism in Serrinha nucleus, were probably produced by melting of a clinopyroxene-phlogopite-apatite enriched-source. The identification of different mineral paragenesis in the source of potassic and ultrapotassic lamprophyres from Serrinha nucleus can contribute to the understanding of the mantle heterogeneities and tectonic evolution of this region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work reports on the construction and spectroscopic analyses of optical micro-cavities (OMCs) that efficiently emit at ~1535 nm. The emission wavelength matches the third transmission window of commercial optical fibers and the OMCs were entirely based on silicon. The sputtering deposition method was adopted in the preparation of the OMCs, which comprised two Bragg reflectors and one spacer layer made of either Er- or ErYb-doped amorphous silicon nitride. The luminescence signal extracted from the OMCs originated from the 4I13/2→4I15/2 transition (due to Er3+ ions) and its intensity showed to be highly dependent on the presence of Yb3+ ions.According to the results, the Er3+-related light emission was improved by a factor of 48 when combined with Yb3+ ions and inserted in the spacer layer of the OMC. The results also showed the effectiveness of the present experimental approach in producing Si-based light-emitting structures in which the main characteristics are: (a) compatibility with the actual microelectronics industry, (b) the deposition of optical quality layers with accurate composition control, and (c) no need of uncommon elements-compounds nor extensive thermal treatments. Along with the fundamental characteristics of the OMCs, this work also discusses the impact of the Er3+-Yb3+ ion interaction on the emission intensity as well as the potential of the present findings.