41 resultados para RESONANCE LIGHT-SCATTERING
Resumo:
Polymeric nanoparticles (PLGA) have been developed for the encapsulation and controlled release of quercetin and catechin. Nanoparticles were fabricated using a solvent displacementmethod. Physicochemical properties were measured by light scattering, scanning electron microscopy and zeta-potential, X-ray diffraction, infrared spectroscopy and differential scanning calorimetry. Encapsulation efficiency and in vitro release profiles were obtained from differential pulse voltammetry experiments. Antioxidant properties of free and encapsulated flavonoids were determined by TBARS, fluorescence spectroscopy and standard chelating activity methods. Relatively small (d approximate to 400 nm) polymeric nanoparticles were obtained containing quercetin or catechin in a non-crystalline form (EE approximate to 79%) and the main interactions between the polymer and each flavonoid were found to consist of hydrogen bonds. In vitro release profiles were pH-dependant, the more acidic pH, the faster release of each flavonoid from the polymeric nanoparticles. The inhibition of the action of free radicals and chelating properties, were also enhanced when quercetin and catechin were encapsulated within PLGA nanoparticles. The information obtained from this study will facilitate the design and fabrication of polymeric nanoparticles as possible oral delivery systems for encapsulation, protection and controlled release of flavonoids aimed to prevent oxidative stress in human body or food products.
Resumo:
Background: Antigen B (AgB) is the major protein secreted by the Echinococcus granulosus metacestode and is involved in key host-parasite interactions during infection. The full comprehension of AgB functions depends on the elucidation of several structural aspects that remain unknown, such as its subunit composition and oligomeric states. Methodology/Principal Findings: The subunit composition of E. granulosus AgB oligomers from individual bovine and human cysts was assessed by mass spectrometry associated with electrophoretic analysis. AgB8/1, AgB8/2, AgB8/3 and AgB8/4 subunits were identified in all samples analyzed, and an AgB8/2 variant (AgB8/2v8) was found in one bovine sample. The exponentially modified protein abundance index (emPAI) was used to estimate the relative abundance of the AgB subunits, revealing that AgB8/1 subunit was relatively overrepresented in all samples. The abundance of AgB8/3 subunit varied between bovine and human cysts. The oligomeric states formed by E. granulosus AgB and recombinant subunits available, rAgB8/1, rAgB8/2 and rAgB8/3, were characterized by native PAGE, light scattering and microscopy. Recombinant subunits showed markedly distinct oligomerization behaviors, forming oligomers with a maximum size relation of rAgB8/3 >rAgB8/2>rAgB8/1. Moreover, the oligomeric states formed by rAgB8/3 subunit were more similar to those observed for AgB purified from hydatid fluid. Pressure-induced dissociation experiments demonstrated that the molecular assemblies formed by the more aggregative subunits, rAgB8/2 and rAgB8/3, also display higher structural stability. Conclusions/Significance: For the first time, AgB subunit composition was analyzed in samples from single hydatid cysts, revealing qualitative and quantitative differences between samples. We showed that AgB oligomers are formed by different subunits, which have distinct abundances and oligomerization properties. Overall, our findings have significantly contributed to increase the current knowledge on AgB expression and structure, highlighting issues that may help to understand the parasite adaptive response during chronic infection.
Resumo:
Lignin is a macromolecule frequently obtained as residue during technological processing of biomass. Modifications in chemical structure of lignin generate valuable products, some with particular and unique characteristics. One of the available methods for modification of industrial lignin is oxidation by hydrogen peroxide. In this work, we conducted systematic studies of the oxidation process that were carried out at various pHs and oxidizing agent concentrations. Biophysical, biochemical, structural properties of the oxidized lignin were analyzed by UV spectrophotometry, Fourier transform infrared spectroscopy, scanning electron microscopy and small angle X-ray scattering. Our results reveal that lignin oxidized with 9.1% H(2)O(2) (m/v) at pH 13.3 has the highest fragmentation, oxidation degree and stability. Although this processing condition might be considered quite severe, we have concluded that the stability of the obtained oxidized lignin was greatly increased. Therefore, the identified processing conditions of oxidation may be of practical interest for industrial applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The wide variety of molecular architectures used in sensors and biosensors and the large amount of data generated with some principles of detection have motivated the use of computational methods, such as information visualization techniques, not only to handle the data but also to optimize sensing performance. In this study, we combine projection techniques with micro-Raman scattering and atomic force microscopy (AFM) to address critical issues related to practical applications of electronic tongues (e-tongues) based on impedance spectroscopy. Experimentally, we used sensing units made with thin films of a perylene derivative (AzoPTCD acronym), coating Pt interdigitated electrodes, to detect CuCl(2) (Cu(2+)), methylene blue (MB), and saccharose in aqueous solutions, which were selected due to their distinct molecular sizes and ionic character in solution. The AzoPTCD films were deposited from monolayers to 120 nm via Langmuir-Blodgett (LB) and physical vapor deposition (PVD) techniques. Because the main aspects investigated were how the interdigitated electrodes are coated by thin films (architecture on e-tongue) and the film thickness, we decided to employ the same material for all sensing units. The capacitance data were projected into a 2D plot using the force scheme method, from which we could infer that at low analyte concentrations the electrical response of the units was determined by the film thickness. Concentrations at 10 mu M or higher could be distinguished with thinner films tens of nanometers at most-which could withstand the impedance measurements, and without causing significant changes in the Raman signal for the AzoPTCD film-forming molecules. The sensitivity to the analytes appears to be related to adsorption on the film surface, as inferred from Raman spectroscopy data using MB as analyte and from the multidimensional projections. The analysis of the results presented may serve as a new route to select materials and molecular architectures for novel sensors and biosensors, in addition to suggesting ways to unravel the mechanisms behind the high sensitivity obtained in various sensors.
Resumo:
Large conurbations are a significant source of the anthropogenic pollution and demographic differences between cities that result in a different pollution burden. The metropolitan area of Sao Paulo (MASP, population 20 million) accounts for one fifth of the Brazilian vehicular fleet. A feature of MASP is the amount of ethanol used by the vehicular fleet, known to exacerbate air quality. The study describes the diurnal behaviour of the submicron aerosol and relies on total particle number concentration, particle number size distribution, light scattering and light absorption measurements. Modelled planetary boundary layer (PBL) depth and air mass movement data were used to aid the interpretation. During morning rush-hour, stagnant air and a shallow PBL height favour the accumulation of aerosol pollution. During clear-sky conditions, there was a wind shift towards the edge of the city indicating a heat island effect with implications on particulate pollution levels at the site. The median total particle number concentration for the submicron aerosol typically varied in the range 1.6 x 10(4)-3.2 x 10(4) cm(-3) frequently exceeding 4 x 10(4) cm-3 during the day. During weekdays, nucleation-mode particles are responsible for most of the particles by numbers. The highest concentrations of total particle number concentrations and black carbon (BC) were observed on Fridays. Median diurnal values for light absorption and light scattering (at 637 nm wavelength) varied in the range 12-33 Mm(-1) and 21-64 Mm(-1), respectively. The former one is equal to 1.8-5.0 mu g m(-3) of BC. The growth of the PBL, from the morning rush-hour until noon, is consistent with the diurnal cycle of BC mass concentrations. Weekday hourly median single-scattering albedo (omega(0)) varied in the range 0.59-0.76. Overall, this suggests a top of atmosphere (TOA) warming effect. However, considering the low surface reflectance of urban areas, for the given range of omega(0), the TOA radiative forcing can be either positive or negative for the sources within the MASP. On the average, weekend omega(0) values were 0.074 higher than during weekdays. During 11% of the days, new particle formation (NPF) events occurred. The analysed events growth rates ranged between 9 and 25 nm h(-1). Sulphuric acid proxy concentrations calculated for the site were less than 5% of the concentration needed to explain the observed growth. Thus, other vapours are likely contributors to the observed growth.
Resumo:
The ionic liquid butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [C4C1C1C1N][Tf2N], is a glass-forming liquid that exhibits partial crystallization depending on the cooling rate. Differential scanning calorimetry (DSC) indicates crystallization at T-c = 227 K, melting at T-m = 258 K, glass transition at T-g similar to 191 K, and also cold crystallization at T-cc similar to 219 K. Raman spectroscopy shows that the crystalline structure obtained by slow cooling is formed with [Tf2N](-) in cisoid conformation, whereas [Tf2N](-) in transoid conformation results from fast cooling. No preferred conformation of the butyl chain of the [C4C1C1C1N](+) cation is favored by slow or fast cooling of [C4C1C1C1N][Tf2N]. Low-frequency Raman spectroscopy shows that crystalline domains developing in the supercooled liquid result in a glacial state made of a mixture of crystallites and amorphous phase. However, these crystalline structures obtained by slow cooling or cold crystallization are not the same because anion-cation interactions promote local structures with distinct conformations of the [Tf2N](-) anion.
Resumo:
Glossoscolex paulistus hemoglobin (HbGp) was studied by dynamic light scattering (DLS) and small angle X-ray scattering (SAXS). DLS melting curves were measured for met-HbGp at different concentrations. SAXS temperature studies were performed for oxy-, cyanomet- and met-HbGp forms, at several pH values. At pH 5.0 and 6.0, the scattering curves are identical from 20 to 60 degrees C, and R-g is 108 angstrom, independent of the oxidation form. At pH 7.0, protein denaturation and aggregation occurs above 55 degrees C and 60 degrees C, for oxy and met-HbGp, respectively. Cyanomet-HbGp, at pH 7.0, is stable up to 60 degrees C. At alkaline pH (8.0-9.0) and higher temperature, an irreversible dissociation process is observed, with a decrease of R-g, D-max and I(0). Analysis by p(r), obtained from GNOM, and OLIGOMER, was used to fit the SAXS experimental scattering curves by a combination of theoretical curves obtained for HbLt fragments from the crystal structure. Our results show clearly the increasing contribution of smaller molecular weight fragments, as a function of increasing pH and temperature, as well as, the order of thermal stabilities: cyanomet-> oxy- > met-HbGp. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We measured the mixing ratios of NO, NO2, O-3, and volatile organic carbon as well as the aerosol light-scattering coefficient on a boat platform cruising on rivers downwind of the city of Manaus (Amazonas State, Brazil) in July 2001 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia-Cooperative LBA Airborne Regional Experiment-2001). The dispersion and impact of the Manaus plume was investigated by a combined analysis of ground-based (boat platform) and airborne trace gas and aerosol measurements as well as by meteorological measurements complemented by dispersion calculations (Hybrid Single-Particle Lagrangian Integrated Trajectory model). For the cases with the least anthropogenic influence (including a location in a so far unexplored region similar to 150 km west of Manaus on the Rio Manacapuru), the aerosol scattering coefficient, sigma(s), was below 11 Mm(-1), NOx mixing ratios remained below 0.6 ppb, daytime O-3 mixing ratios were mostly below 20 ppb and maximal isoprene mixing ratios were about 3 ppb in the afternoon. The photostationary state (PSS) was not established for these cases, as indicated by values of the Leighton ratio, Phi, well above unity. Due to the influence of river breeze systems and other thermally driven mesoscale circulations, a change of the synoptic wind direction from east-northeast to south-southeast in the afternoon often caused a substantial increase of ss and trace gas mixing ratios (about threefold for sigma(s), fivefold for NOx, and twofold for O-3), which was associated with the arrival of the Manaus pollution plume at the boat location. The ratio F reached unity within its uncertainty range at NOx mixing ratios of about 3 ppb, indicating "steady-state" conditions in cases when radiation variations, dry deposition, emissions, and reactions mostly involving peroxy radicals (XO2) played a minor role. The median midday/afternoon XO2 mixing ratios estimated using the PSS method range from 90 to 120 parts per trillion (ppt) for the remote cases (sigma(s) < 11 Mm(-1) and NOx < 0.6 ppb), while for the polluted cases our estimates are 15 to 60 ppt. These values are within the range of XO2 estimated by an atmospheric chemistry box model (Chemistry As A Box model Application-Module Efficiently Calculating the Chemistry of the Atmosphere (CAABA/MECCA)-3.0).
Resumo:
Using Fluorescence Recovery After Photobleaching, we investigate the Brownian motion of DNA rod-like fragments in two distinct anisotropic phases with a local nematic symmetry. The height of the measurement volume ensures the averaging of the anisotropy of the in-plane diffusive motion parallel or perpendicular to the local nematic director in aligned domains. Still, as shown in using a model specifically designed to handle such a situation and predicting a non-Gaussian shape for the bleached spot as fluorescence recovery proceeds, the two distinct diffusion coefficients of the DNA particles can be retrieved from data analysis. In the first system investigated (a ternary DNA-lipid lamellar complex), the magnitude and anisotropy of the diffusion coefficient of the DNA fragments confined by the lipid bilayers are obtained for the first time. In the second, binary DNA-solvent system, the magnitude of the diffusion coefficient is found to decrease markedly as DNA concentration is increased from isotropic to cholesteric phase. In addition, the diffusion coefficient anisotropy measured within cholesteric domains in the phase coexistence region increases with concentration, and eventually reaches a high value in the cholesteric phase.
Resumo:
The cationic lipid dioctadecyldimethylammonium bromide (DODAB) and the CpG oligonucleotide (CpG) have been separately used as potent immunoadjuvants driving Th1 responses. Here DODAB bilayer fragments (BF) and CpG (5 -TTGACGTTCG-3) assemblies have their physical properties and immunoadjuvant activity determined using ovalbumin (OVA) as a model antigen. At 0.1 mg/mL OVA, the dependence of DODAB BF/OVA size and zeta-potential on time and [DODAB] establishes 0.1 mMDODAB as suitable for obtaining stable and cationic DODAB BF/OVA assemblies. At 0.1 mMDODAB, 0.1 mg/mL OVA and 0.006 mMCpG, the zeta-potential is zero. At [CpG]>0.006 mM, good colloidal stability for the anionic assemblies is due to charge overcompensation. At 0.020 mM CpG, these DODAB BF/OVA/CpG assemblies are highly effective in vivo generating responses similar to those elicited by the stable and cationic DODAB BF/OVA. The anti-OVA DTH reaction and the secretion of IFN-gamma and IL-12 are 6, 42 and 9 times larger for the DODAB BF/OVA/CpG-immunized mice than the same responses by OVA-immunized mice, respectively. This work shows for the first time that charge of small assemblies is not important to determine the immune response. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Lewy bodies and Lewy neurites, neuropathological hallmarks of several neurological diseases, are mainly made of filamentous assemblies of alpha-synuclein. However, other macromolecules including Tau, ubiquitin, glyceraldehyde-3-phosphate dehydrogenase, and glycosaminoglycans are routinely found associated with these amyloid deposits. Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic enzyme that can form fibrillar aggregates in the presence of acidic membranes, but its role in Parkinson disease is still unknown. In this work, the ability of heparin to trigger the amyloid aggregation of this protein at physiological conditions of pH and temperature is demonstrated by infrared and fluorescence spectroscopy, dynamic light scattering, small angle x-ray scattering, circular dichroism, and fluorescence microscopy. Aggregation proceeds through the formation of short rod-like oligomers, which elongates in one dimension. Heparan sulfate was also capable of inducing glyceraldehyde-3-phosphate dehydrogenase aggregation, but chondroitin sulfates A, B, and C together with dextran sulfate had a negligible effect. Aided with molecular docking simulations, a putative binding site on the protein is proposed providing a rational explanation for the structural specificity of heparin and heparan sulfate. Finally, it is demonstrated that in vitro the early oligomers present in the glyceraldehyde-3-phosphate dehydrogenase fibrillation pathway promote alpha-synuclein aggregation. Taking into account the toxicity of alpha-synuclein prefibrillar species, the heparin-induced glyceraldehyde-3-phosphate dehydrogenase early oligomers might come in useful as a novel therapeutic strategy in Parkinson disease and other synucleinopathies.
Resumo:
A delivery system containing polymeric (Eudragit) nanoparticles has been developed for encapsulation and controlled release of bioactive flavonoids (quercetin). Nanoparticles were fabricated using a solvent displacement method. Particle size, morphology, and charge were measured by light scattering, electron microscopy and zeta-potential. Encapsulation efficiency (EE) and release profiles were determined using electrochemical methods. Molecular interactions within the particle matrix were characterized by X-ray diffraction, differential scanning calorimetry, and infrared spectroscopy. Antioxidant properties of free and encapsulated quercetin were analyzed by TBARS and fluorescence spectroscopy. Bioaccessibility of quercetin was evaluated using an in vitro digestion model. Relatively small (d a parts per thousand aEuro parts per thousand 370 nm) anionic polymeric nanoparticles were formed containing quercetin in a non-crystalline form (EE a parts per thousand aEuro parts per thousand 67 %). The main interaction between quercetin and Eudragit was hydrogen bonding. Encapsulated quercetin remained stable during 6 months storage and maintained its antioxidant activity. Quercetin bioaccessibility within simulated small intestinal conditions was improved by encapsulation. The knowledge obtained from this study will facilitate the rational design and fabrication of polymeric nanoparticles as oral delivery systems for encapsulation, protection, and release of bioactive compounds.
Resumo:
The anomalies in the anti-Stokes to Stokes intensity ratios in single-molecule surface-enhanced resonance Raman scattering were investigated. Brilliant green and crystal violet dyes were the molecular probes, and the experiments were carried out on an electrochemically activated Ag surface. The results allowed new insights into the origin of these anomalies and led to a new method to confirm the single-molecule regime in surface-enhanced Raman scattering. Moreover, a methodology to estimate the distribution of resonance energies that contributed to the imbalance in the anti-Stokes to Stokes intensity ratios at the electromagnetic hot spots was proposed. This method allowed the local plasmonic resonance energies on the metallic surface to be spatially mapped.
Resumo:
The interaction between the antimicrobial peptide gramicidin (Gr) and dipalmitoylphosphatidylcholine (DPPC)/dioctadecyldimethylammonium bromide (DODAB) 1:1 large unilamellar vesicles (LVs) or bilayer fragments (BFs) was evaluated by means of several techniques. The major methods were: 1) Gr intrinsic fluorescence and circular dichroism (CD) spectroscopy; 2) dynamic light scattering for sizing and zeta-potential analysis; 3) determination of the bilayer phase transition from extrinsic fluorescence of bilayer probes; 4) pictures of the dispersions for evaluation of coloidal stability over a range of time and NaCl concentration. For Gr in LVs, the Gr dimeric channel conformation is suggested from: 1) CD and intrinsic fluorescence spectra similar to those in trifluoroethanol (TFE); 2) KCl or glucose permeation through the LVs/Gr bilayer. For Gr in BFs, the intertwined dimeric, non-channel Gr conformation is evidenced by CD and intrinsic fluorescence spectra similar to those in ethanol. Both LVs and BFs shield Gr tryptophans against quenching by acrylamide but the Stern-Volmer quenching constant was slightly higher for Gr in BFs confirming that the peptide is more exposed to the water phase in BFs than in LVs. The DPPC/DODAB/Gr supramolecular assemblies may predict the behavior of other antimicrobial peptides in assemblies with lipids. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The incorporation of the curcumin into poly(lactic-co-glycolic)acid (PLGA) nanospheres by the nanoprecipitation technique, the characterization of the nanoparticles and the schistosomicidal activity of the curcumin-loaded into PLGA nanospheres were reported. The incorporation process occurred with high efficiency and the images of field-emission scanning electron microscopy (FESEM) revealed the production of spherically shaped particles. According to the dynamic light scattering measurements, the particles are nanometric and monodisperse. The curcumin-loaded PLGA nanoparticles (50 and 100 mu M) caused the death of all worms and a separation between 50% and 100% of Schistosoma mansoni couples at concentrations from 30 mu M. Moreover, the curcumin-loaded PLGA nanoparticles also decreased the motor activity and caused partial alterations in the tegument of adult worms. This study marks the first time that schistosomicidal activity has been reported for curcumin-loaded PLGA nanoparticles.