26 resultados para REDUCTION REACTION
Resumo:
This paper presents the results of a study on carbothermal reduction of iron ore made under the microwave field in equipment specially developed for this purpose. The equipment allows the control of radiated and reflected microwave power, and therefore measures the microwave energy actually applied to the load in the reduction process. It also allows performing energy balances and determining the reaction rate with high levels of confidence by simultaneously measuring temperature and mass of the material upon reduction with high reproducibility. We used a microwave generator of 2.45?GHz with variable power up to 3000?W. Self-reducing pellets under argon atmosphere, containing iron ore and petroleum coke, with 3.5?g of mass and 15?mm of diameter were declined. We obtained the kinetic curves of reduction of iron ore and of energy consumption to the process in the maximum electric field, in the maximum magnetic field and at different values of power/mass. The data allow analyzing how the microwave energy was actually consumed in the reduction of ore.
Resumo:
Objectives: This study evaluated subcutaneous tissue response to Aroeira (Myracrodruon urundeuva) extract employing edemogenic and histological analyses. Material and methods: Test groups consisted of aqueous and ethanolic Aroeira extracts and saline (control). For groups consisted of aqueous and ethanolic Aroeira extracts and saline Blue. After 30 min, the extracts and saline were injected on the dorsum of the rats, which were then sacrificed after 3 and 6 h. Readings were performed in a spectrophotometer. For subcutaneous implantation, 30 rats received a polyethylene tube containing the extracts on their dorsum and then they were killed after 7 and 28 days. The samples were processed for histological analysis and evaluated with a light microscope. The inflammatory infiltrate was quantified. Results: There were no statistically significant differences between aqueous extract and saline groups in relation to edema quantification in the different periods (p > 0.05). Ethanolic solution resulted in more edema independently of the experimental period (p < 0.05). Histological analysis showed similar results on the 7-day period for the 3 groups. There was a notable reduction on inflammatory cell number for saline and aqueous extract groups at 28 days. Conclusion: The aqueous extract showed biocompatible properties similar to those of saline.
Resumo:
A novel amperometric sensor based on the incorporation of ruthenium oxide hexacyanoferrate (RuOHCF) into multiwalled carbon nanotubes (MWCNTs) immobilized on a glassy carbon electrode is described. Cyclic voltammetry experiments indicated that the cathodic reduction of hydrogen peroxide at the RuOHCF/MWCNTs100/GC modified electrode is facilitated, occurring at 0.0 V vs. Ag/AgCl/KCl(sat). Following the optimization of the experimental conditions, the proposed sensor presented excellent analytical properties for hydrogen peroxide determination, with a low limit of detection (4.7 mu mol L-1), a large dynamic concentration range (0.1-10 mmol L-1) and a sensitivity of 1280 mu A mmol(-1) L cm(-2). The usefulness of the RuOHCF/MWCNTs100/GC electrochemical sensor was confirmed by monitoring the consumption of hydrogen peroxide during the degradation of phenol by the Fenton reaction. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: The aim of the present study is to evaluate the clinical and microbiologic changes resulting from non-surgical periodontal treatment associated with amoxicillin and metronidazole in individuals with aggressive periodontitis. Methods: Fifteen individuals with aggressive periodontitis received non-surgical periodontal treatment and 45 days after completion of treatment were treated with antibiotics. Clinical data and samples of subgingival plaque were collected at baseline, 45 days after the non-surgical periodontal treatment, and 1 month after the use of antimicrobial agents. After 3 and 6 months, only clinical data were collected. The presence and quantification of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis (Pg), Tannerella forsythia (Tf), Treponema denticola (Td), and Dialister pneumosintes were determined by real-time polymerase chain reaction. Results: All clinical parameters, with the exception of clinical attachment level (CAL), had significantly (P<0.05) improved at the end of the third month after non-surgical therapy associated with antibiotics. There was significant (P<0.05) reduction in the quantities of Td and Tf. After 1 month, there were significant (P<0.05) reductions in the frequencies of Pg and Tf. Conclusion: Non-surgical mechanical treatment associated with the use of amoxicillin and metronidazole led to an improvement in all clinical parameters studied, except for CAL, and significantly reduced the amount of subgingival Tf and Td. J Periodontal 2012;83:744-752.
Resumo:
Lupulones, hops beta-acids, are one of the main constituents of the hops resin and have an important contribution to the overall bacteriostatic activity of hops during beer brewing. The use of lupulones as natural alternatives to antibiotics is increasing in the food industry and also in bioethanol production. However, lupulones are easy oxidizable and have been shown to be very reactive toward 1-hydroxyethyl radical with apparent bimolecular rate constants close to diffusion control k = 2.9 x 10(8) and 2.6 x 10(8) L mol(-1) s(-1) at 25.0 +/- 0.2 degrees C in ethanol water solution (10% of ethanol (v/v)) as probed by EPR and ESI-IT-MS/MS spin-trapping competitive kinetics, respectively. The free energy change for an electron-transfer mechanism is Delta G degrees = 106 kJ/mol as calculated from the oxidation peak potential experimentally determined for lupulones (1.1 V vs NHE) by cyclic voltammetry and the reported reduction potential for 1-hydroxyethyl radical. The major reaction products identified by LC-ESI-IT-MS/MS and ultrahigh-resolution accurate mass spectrometry (orbitrap FT-MS) are hydroxylated lupulone derivatives and 1-hydroxyethyl radical adducts. The lack of pH dependence for the reaction rate constant, the calculated free energy change for electron transfer, and the main reaction products strongly suggest the prenyl side chains at the hops beta-acids as the reaction centers rather than the beta,beta'-triketone moiety.
Resumo:
We investigated the role of aminoguanidine and benfotiamine on the inhibition of reactive oxygen species (ROS) generation in macrophages induced by advanced glycated albumin (AGE-albumin) and its relationship with cell cholesterol homeostasis, emphasizing the expression of the ATP binding cassette transporter A-1 (ABCA-1). AGE-albumin was made by incubating fatty acid-free albumin with 10 mM glycolaldehyde. ROS production and ABCA-1 protein level were determined by flow cytometry in J774 macrophages treated along time with control (C) or AGE-albumin alone or in the presence of aminoguanidine or benfotiamine. Mitochondrial function was evaluated by oxygraphy. Compared to C-albumin, AGE-albumin increased ROS production in macrophages, which was ascribed to the activities of NADPH oxidase and of the mitochondrial system. Mitochondrial respiratory chain activity was reduced in cells incubated with AGE-albumin. ROS generation along time was associated with the reduction in macrophage ABCA-1 protein level. Aminoguanidine prevented ROS elevation and restored the ABCA-1 content in macrophages; on the other hand, benfotiamine that promoted a lesser reduction in ROS generation was not able to restore ABCA-1 levels. Inhibition of oxidative stress induced by AGE-albumin prevents disturbances in reverse cholesterol transport by curbing the reduction of ABCA-1 elicited by advanced glycation in macrophages and therefore may contribute to the prevention of atherosclerosis in diabetes mellitus.
Resumo:
Carbon supported Pt-Sn catalysts were prepared by reduction of Pt and Sn precursors with formic acid and characterized in terms of structure, morphology and surface properties. The electrocatalytic activity for ethanol oxidation was studied in a direct ethanol fuel cell (DEFC) at 70 degrees C and 90 degrees C. Electrochemical and physico-chemical data indicated that a proper balance of Pt and Sn species in the near surface region was necessary to maximize the reaction rate. The best atomic surface composition, in terms of electrochemical performance, was Pt:Sn 65:35 corresponding to a bulk composition 75:25 namely Pt3Sn1/C. The reaction products of ethanol electro-oxidation in single cell and their distribution as a function of the nature of catalyst were determined. Essentially, acetaldehyde and acetic acid were detected as the main reaction products; whereas, a lower content of CO2 was formed. The selectivity toward acetic acid vs. acetaldehyde increased with the increase of the Sn content and decreased by decreasing the concentration of the reducing agent used in the catalyst preparation. According to the recent literature, these results have been interpreted on the basis of ethanol adsorption characteristics and ligand effects occurring for Sn-rich electrocatalysts. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this study, catalysts containing 5 wt.% Ni deposited on a support composed of a CeO2-ZrO2 solid solution deposited on alumina were tested in the steam reforming of methane. The supports, with various ratios of Ce to Zr, were prepared by co-precipitation of the oxide precursors, followed by calcination in synthetic air. The catalysts were then prepared by Ni impregnation of the supports. The prepared solids were characterized by temperature-programmed reduction with H-2 (TPR-H-2), in situ X-ray diffraction (XRD) and X-ray absorption near-edge structure (XANES) spectroscopy. The XRD analysis confirmed the formation of a solid solution between ZrO2 and CeO2. In the catalytic tests, it was found that catalysts with higher Ce content did not exhibit deactivation during 6 h of reaction. The catalyst with highest Ce content, Ni(0.8Ce0.2Zr)AI, provided the best result, with the highest rate of conversion of methane and the lowest carbon deposition, which may be partly due to the smaller Ni-0 crystallites in this sample and also the segregated CeO2 particles may have favored H2O adsorption which could lead to higher C gasification. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The CuO/CeO2 system was investigated as a catalyst for preferential CO oxidation reaction in hydrogen-rich feed (PROX-CO). The catalysts were prepared by deposition-precipitation (DEP) and co-precipitation (COP) methods and the catalytic performance reveals that the preparation method influences the properties of solids prepared, where a direct consequence is the difference in behavior of the catalysts in the PROX-CO reaction. A high specific area and a better dispersion of the metallic phase were obtained in the catalyst prepared by co-precipitation. The redox properties during the reaction were reported by measures of temperature programmed reduction (TPR), OSC measurements and X-ray absorption near edge structure (XANES-TPR) in situ showed the relationship between the preparation method, the physicochemical characteristics and redox properties in the PROX-CO reaction. By this means, the good dispersion of CuO and the best oxygen capacity are the response of the high performance of CuO/CeO2-COP catalysts for the PROX-CO reaction. Crown Copyright (c) 2012 Published by Elsevier B.V. All rights reserved.
Resumo:
The effects of small fractions of calcium (x = 0, 0.05, 0.1, 0.15, and 0.20) on the structure and the catalytic properties of La2-xCaxCuO4 peroviskites have been investigated. The samples have been synthesized using the co-precipitation method. Perovskite-type oxides were characterized by XRD, TPR, XPS, XANES, SEM, and TEM. Catalytic tests for the water gas shift reaction (WGSR) were carried out in a tubular reactor at 290 degrees C. All samples showed a well-defined perovskite structure with surface areas between 6 and 18 m(2) g(-1). The partial substitution of La by Ca enhanced the stability of the perovskites and increased their reduction temperature. All catalysts were actives for WGSR, and the best catalytic performance was obtained for the La1.85Ca0.15CuO4 catalyst, but the samples with 5 and 10% of Ca had the best TOF values for reaction. These results can be associated to promoter effect of calcium, the high surface area, and the reducible species Cu-0 and Cu1+. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The addition of Cu2+ ions to the classical Fenton reaction (Fe2+ plus H2O2 at pH 3) is found to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15 % additional reduction of the total organic carbon (TOC), representing an overall improvement of the efficiency of the mineralization of phenol. Although Fe2+ exhibits a high initial rate of degradation, the degradation is not complete due to the formation of compounds refractory to the hydroxyl radical. The interference of copper ions on the degradation of phenol by the Fenton reaction was investigated. In the presence of Cu2+, the degradation is slower, but results in a greater reduction of TOC at the end of the reaction (t = 120 min). In the final stages of the reaction, when the Fe3+ in the solution is complexed in the form of ferrioxalate, the copper ions assume the role of the main catalyst of the degradation