19 resultados para Quantum Hall effect
Resumo:
Nanosized rare earth phosphovanadate phosphors (Y(P,V)O-4:Eu3+) have been prepared by applying the organic-inorganic polymeric precursors methodology. Luminescent powders with tetragonal structure and different vanadate concentrations (0%, 1%, 5%, 10%, 20%, 50%, and 100%, with regard to the phosphate content) were then obtained for evaluation of their structural and spectroscopic properties. The solids were characterized by scanning electron microscopy, X-ray diffractometry, vibrational spectroscopy (Raman and infrared), and electronic spectroscopy (emission, excitation, luminescence lifetimes, chromaticity, quantum efficiencies, and Judd-Ofelt intensity parameters). The solids exhibited very intense D-5(0) -> F-7(J) Eu3+ transitions, and it was possible to control the luminescent characteristics, such as excitation maximum, lifetime and emission colour, through the vanadium(V) concentration. The observed luminescent properties correlated to the characteristics of the chemical environments around the Eu3+ ions with respect to the composition of the phosphovanadates. The Eu3+ luminescence spectroscopy results indicated that the presence of larger vanadium(V) amounts in the phosphate host lattice led to more covalent and polarizable chemical environments. So, besides allowing for control of the luminescent properties of the solids, the variation in the vanadate concentration in the obtained YPO4:Eu3+ phosphors enabled the establishment of a strict correlation between the observable spectroscopic features and the chemical characteristics of the powders.
Resumo:
This paper discusses the theoretical and experimental results obtained for the excitonic binding energy (Eb) in a set of single and coupled double quantum wells (SQWs and CDQWs) of GaAs/AlGaAs with different Al concentrations (Al%) and inter-well barrier thicknesses. To obtain the theoretical Eb the method proposed by Mathieu, Lefebvre and Christol (MLC) was used, which is based on the idea of fractional-dimension space, together with the approach proposed by Zhao et al., which extends the MLC method for application in CDQWs. Through magnetophotoluminescence (MPL) measurements performed at 4 K with magnetic fields ranging from 0 T to 12 T, the diamagnetic shift curves were plotted and adjusted using two expressions: one appropriate to fit the curve in the range of low intensity fields and another for the range of high intensity fields, providing the experimental Eb values. The effects of increasing the Al% and the inter-well barrier thickness on Eb are discussed. The Eb reduction when going from the SQW to the CDQW with 5 Å inter-well barrier is clearly observed experimentally for 35% Al concentration and this trend can be noticed even for concentrations as low as 25% and 15%, although the Eb variations in these latter cases are within the error bars. As the Zhao's approach is unable to describe this effect, the wave functions and the probability densities for electrons and holes were calculated, allowing us to explain this effect as being due to a decrease in the spatial superposition of the wave functions caused by the thin inter-well barrier.
Resumo:
This work reports on the photophysical properties of zinc porphyrins meso-tetrakis methylpyridiniumyl (Zn2+TMPyP) and meso-tetrakis sulfonatophenyl (Zn2+TPPS) in homogeneous aqueous solutions and in the presence of sodium dodecyl sulfate (SDS) and cetyltrimethyl ammonium bromide (CTAB) micelles. The excited-state dynamic was investigated with the Z-scan technique, UV-Vis absorption, and fluorescence spectroscopy. Photophysical parameters were obtained by analyzing the experimental data with a conventional five-energy-level diagram. The interaction of the charged side porphyrin groups with oppositely charged surfactants can reduce the electrostatic repulsion between porphyrin molecules leading to aggregation, which affected the porphyrin characteristics such as absorption cross-sections, lifetimes and quantum yields. The interaction between anionic ZnTPPS with cationic CTAB micelles induced the formation of porphyrin J-aggregates, while this effect was not observed in the interaction of ZnTMPyP with SDS micelles. This difference is, probably, due to the difference in electrostatic repulsion between the porphyrin molecules. The insights obtained by these results are important for the understanding of the photophysical behavior of porphyrins, regarding potential applications in pharmacokinetics as encapsulation of photosensitizer for drug delivery systems and in its interaction with cellular membrane.
Resumo:
Excitonic dynamics in a hybrid dot-well system composed of InAs quantum dots (QDs) and an InGaAs quantum well (QW) is studied by means of femtosecond pump-probe reflection and continuous wave (cw) photoluminescence (PL) spectroscopy. The system is engineered to bring the QW ground exciton state into resonance with the third QD excited state. The resonant tunneling rate is varied by changing the effective barrier thickness between the QD and QW layers. This strongly affects the exciton dynamics in these hybrid structures as compared to isolated QW or QD systems. Optically measured decay times of the coupled system demonstrate dramatically different response to temperature change depending on the strength of the resonant tunneling or coupling strength. This reflects a competition between purely quantum mechanical and thermodynamical processes.