19 resultados para Plant virus transmission
Resumo:
Abstract Background Hepatitis C chronic liver disease is a major cause of liver transplant in developed countries. This article reports the first nationwide population-based survey conducted to estimate the seroprevalence of HCV antibodies and associated risk factors in the urban population of Brazil. Methods The cross sectional study was conducted in all Brazilian macro-regions from 2005 to 2009, as a stratified multistage cluster sample of 19,503 inhabitants aged between 10 and 69 years, representing individuals living in all 26 State capitals and the Federal District. Hepatitis C antibodies were detected by a third-generation enzyme immunoassay. Seropositive individuals were retested by Polymerase Chain Reaction and genotyped. Adjusted prevalence was estimated by macro-regions. Potential risk factors associated with HCV infection were assessed by calculating the crude and adjusted odds ratios, 95% confidence intervals (95% CI) and p values. Population attributable risk was estimated for multiple factors using a case–control approach. Results The overall weighted prevalence of hepatitis C antibodies was 1.38% (95% CI: 1.12%–1.64%). Prevalence of infection increased in older groups but was similar for both sexes. The multivariate model showed the following to be predictors of HCV infection: age, injected drug use (OR = 6.65), sniffed drug use (OR = 2.59), hospitalization (OR = 1.90), groups socially deprived by the lack of sewage disposal (OR = 2.53), and injection with glass syringe (OR = 1.52, with a borderline p value). The genotypes 1 (subtypes 1a, 1b), 2b and 3a were identified. The estimated population attributable risk for the ensemble of risk factors was 40%. Approximately 1.3 million individuals would be expected to be anti-HCV-positive in the country. Conclusions The large estimated absolute numbers of infected individuals reveals the burden of the disease in the near future, giving rise to costs for the health care system and society at large. The known risk factors explain less than 50% of the infected cases, limiting the prevention strategies. Our findings regarding risk behaviors associated with HCV infection showed that there is still room for improving strategies for reducing transmission among drug users and nosocomial infection, as well as a need for specific prevention and control strategies targeting individuals living in poverty.
Resumo:
Citrus leprosis, caused by Citrus leprosis virus C (CiLV-C), is currently considered the most important viral disease in the Brazilian citrus industry due to the high costs required for the chemical control of its vector, the mite Brevipalpus phoenicis. The pathogen induces a non-systemic infection and the disease is characterized by the appearance of localized lesions on citrus leaves, stems and fruits, premature fruit and leaf drop and dieback of stems. Attempts were made to promote in vitro expression of the putative cell-to-cell movement protein of CiLV-C in Escherichia coli and to produce a specific polyclonal antibody against this protein as a tool to investigate the virus-plant-vector relationship. The antibody reacted strongly with the homologous protein expressed in vitro by ELISA, but poorly with the native protein present in leaf lesion extracts from sweet orange caused by CiLV-C. Reactions from old lesions were more intense than those from young lesions. Western blot and in situ immunolocalization assays failed to detect the native protein. These results suggest low expression of the movement protein (MP) in host tissues. Moreover, it is possible that the conformation of the protein expressed in vitro and used to produce the antibody differs from that of the native MP, hindering a full recognition of the latter.
Resumo:
We apply Stochastic Dynamics method for a differential equations model, proposed by Marc Lipsitch and collaborators (Proc. R. Soc. Lond. B 260, 321, 1995), for which the transmission dynamics of parasites occurs from a parent to its offspring (vertical transmission), and by contact with infected host (horizontal transmission). Herpes, Hepatitis and AIDS are examples of diseases for which both horizontal and vertical transmission occur simultaneously during the virus spreading. Understanding the role of each type of transmission in the infection prevalence on a susceptible host population may provide some information about the factors that contribute for the eradication and/or control of those diseases. We present a pair mean-field approximation obtained from the master equation of the model. The pair approximation is formed by the differential equations of the susceptible and infected population densities and the differential equations of pairs that contribute to the former ones. In terms of the model parameters, we obtain the conditions that lead to the disease eradication, and set up the phase diagram based on the local stability analysis of fixed points. We also perform Monte Carlo simulations of the model on complete graphs and Erdös-Rényi graphs in order to investigate the influence of population size and neighborhood on the previous mean-field results; by this way, we also expect to evaluate the contribution of vertical and horizontal transmission on the elimination of parasite. Pair Approximation for a Model of Vertical and Horizontal Transmission of Parasites.
Resumo:
BACKGROUND: DENV-1 is one of the four viral serotypes that causes Dengue, the most common mosquito-borne viral disease of humans. The prevalence of these viruses has grown in recent decades and is now present in more than 100 countries. Limited studies document the spread of DENV-1 over the world despite its importance for human health. METHODOLOGY/PRINCIPAL FINDINGS: We used representative DENV-1 envelope gene sequences to unravel the dynamics of viral diffusion under a Bayesian phylogeographic approach. Data included strains from 45 distinct geographic locations isolated from 1944 to 2009. The estimated mean rate of nucleotide substitution was 6.56 × 10⁻⁴ substitutions/site/year. The larger genotypes (I, IV and V) had a distinctive phylogenetic structure and since 1990 they experienced effective population size oscillations. Thailand and Indonesia represented the main sources of strains for neighboring countries. Besides, Asia broadcast lineages into the Americas and the Pacific region that diverged in isolation. Also, a transmission network analysis revealed the pivotal role of Indochina in the global diffusion of DENV-1 and of the Caribbean in the diffusion over the Americas. CONCLUSIONS/SIGNIFICANCE: The study summarizes the spatiotemporal DENV-1 worldwide spread that may help disease control.