17 resultados para Plant ecology--Ontario--Short Hills Provincial Park.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dispersal of plant-feeding mites can occur involuntarily, through transportation of infested plant parts, or voluntarily, by walking to new plant parts or to suitable spots where biotic (phoresis) or abiotic (wind, agricultural tools, etc.) factors carry them over long distances. Elucidating the dispersal mechanisms of the coconut mite, Aceria guerreronis Keifer, is important for understanding the process of colonization of new fruits of a same or different plants, essential for the improvement of control strategies of this serious coconut pest. Thus, the objective of this work was to investigate the voluntary dispersal mechanisms of this mite. The hypothesis that the coconut mite disperses by walking, phoresis or wind were tested. The coconut mite was shown to be able to walk short distances between fruits of the same bunch or between bunches of the same plant. Phoresis on insects of the orders Hymenoptera (Apidae), Coleoptera (Curculionidae) and Lepidoptera (Phycitidae) was evaluated in the laboratory and in the field. Although in the laboratory mites were shown to be able to climb onto honeybees, field investigations failed to show these insects as important carriers of the pest, corroborating findings of previous works; however, both laboratory and field investigations suggested the curculionid Parisoschoenus obesulus Casey to be able to transport the coconut mite between plants. Similarly, laboratory and field investigations suggested wind to be important in the dispersal of the coconut mite between plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questions Does the spatial association between isolated adult trees and understorey plants change along a gradient of sand dunes? Does this association depend on the life form of the understorey plant? Location Coastal sand dunes, southeast Brazil. Methods We recorded the occurrence of understorey plant species in 100 paired 0.25 m2 plots under adult trees and in adjacent treeless sites along an environmental gradient from beach to inland. Occurrence probabilities were modelled as a function of the fixed variables of the presence of a neighbour, distance from the seashore and life form, and a random variable, the block (i.e. the pair of plots). Generalized linear mixed models (GLMM) were fitted in a backward step-wise procedure using Akaike's information criterion (AIC) for model selection. Results The occurrence of understorey plants was affected by the presence of an adult tree neighbour, but the effect varied with the life form of the understorey species. Positive spatial association was found between isolated adult neighbour and young trees, whereas a negative association was found for shrubs. Moreover, a neutral association was found for lianas, whereas for herbs the effect of the presence of an adult neighbour ranged from neutral to negative, depended on the subgroup considered. The strength of the negative association with forbs increased with distance from the seashore. However, for the other life forms, the associational pattern with adult trees did not change along the gradient. Conclusions For most of the understorey life forms there is no evidence that the spatial association between isolated adult trees and understorey plants changes with the distance from the seashore, as predicted by the stress gradient hypothesis, a common hypothesis in the literature about facilitation in plant communities. Furthermore, the positive spatial association between isolated adult trees and young trees identified along the entire gradient studied indicates a positive feedback that explains the transition from open vegetation to forest in subtropical coastal dune environments.