19 resultados para Photometry
Resumo:
We report the discovery of two low-mass companions to the young A0V star HD 1160 at projected separations of 81 +/- 5 AU (HD 1160 B) and 533 +/- 25 AU (HD 1160 C) by the Gemini NICI Planet-Finding Campaign. Very Large Telescope images of the system taken over a decade for the purpose of using HD 1160 A as a photometric calibrator confirm that both companions are physically associated. By comparing the system to members of young moving groups and open clusters with well-established ages, we estimate an age of 50(-40)(+50) Myr for HD 1160 ABC. While the UVW motion of the system does not match any known moving group, the small magnitude of the space velocity is consistent with youth. Near-IR spectroscopy shows HD 1160 C to be an M3.5 +/- 0.5 star with an estimated mass of 0.22(-0.04)(+0.03) M-circle dot, while NIR photometry of HD 1160 B suggests a brown dwarf with a mass of 33(-9)(+12) M-Jup. The very small mass ratio (0.014) between the A and B components of the system is rare for A star binaries, and would represent a planetary-mass companion were HD 1160 A to be slightly less massive than the Sun.
Resumo:
We present and describe a catalog of galaxy photometric redshifts (photo-z) for the Sloan Digital Sky Survey (SDSS) Co-add Data. We use the artificial neural network (ANN) technique to calculate the photo-z and the nearest neighbor error method to estimate photo-z errors for similar to 13 million objects classified as galaxies in the co-add with r < 24.5. The photo-z and photo-z error estimators are trained and validated on a sample of similar to 83,000 galaxies that have SDSS photometry and spectroscopic redshifts measured by the SDSS Data Release 7 (DR7), the Canadian Network for Observational Cosmology Field Galaxy Survey, the Deep Extragalactic Evolutionary Probe Data Release 3, the VIsible imaging Multi-Object Spectrograph-Very Large Telescope Deep Survey, and the WiggleZ Dark Energy Survey. For the best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than sigma(68) = 0.031. After presenting our results and quality tests, we provide a short guide for users accessing the public data.
Resumo:
We investigate the nature of extremely red galaxies (ERGs), objects whose colours are redder than those found in the red sequence present in colour–magnitude diagrams of galaxies. We selected from the Sloan Digital Sky Survey Data Release 7 a volume-limited sample of such galaxies in the redshift interval 0.010 < z < 0.030, brighter than Mr = −17.8 (magnitudes dereddened, corrected for the Milky Way extinction) and with (g − r) colours larger than those of galaxies in the red sequence. This sample contains 416 ERGs, which were classified visually. Our classification was cross-checked with other classifications available in the literature. We found from our visual classification that the majority of objects in our sample are edge-on spirals (73 per cent). Other spirals correspond to 13 per cent, whereas elliptical galaxies comprise only 11 per cent of the objects. After comparing the morphological mix and the distributions of Hα/Hβ and axial ratios of ERGs and objects in the red sequence, we suggest that dust, more than stellar population effects, is the driver of the red colours found in these extremely red galaxies.
Resumo:
We have carried out high contrast imaging of 70 young, nearby B and A stars to search for brown dwarf and planetary companions as part of the Gemini NICI Planet-Finding Campaign. Our survey represents the largest, deepest survey for planets around high-mass stars (≈1.5-2.5 M ☉) conducted to date and includes the planet hosts β Pic and Fomalhaut. We obtained follow-up astrometry of all candidate companions within 400 AU projected separation for stars in uncrowded fields and identified new low-mass companions to HD 1160 and HIP 79797. We have found that the previously known young brown dwarf companion to HIP 79797 is itself a tight (3 AU) binary, composed of brown dwarfs with masses 58$^{+21}_{-20}$ M Jup and 55$^{+20}_{-19}$ M Jup, making this system one of the rare substellar binaries in orbit around a star. Considering the contrast limits of our NICI data and the fact that we did not detect any planets, we use high-fidelity Monte Carlo simulations to show that fewer than 20% of 2 M ☉ stars can have giant planets greater than 4 M Jup between 59 and 460 AU at 95% confidence, and fewer than 10% of these stars can have a planet more massive than 10 M Jup between 38 and 650 AU. Overall, we find that large-separation giant planets are not common around B and A stars: fewer than 10% of B and A stars can have an analog to the HR 8799 b (7 M Jup, 68 AU) planet at 95% confidence. We also describe a new Bayesian technique for determining the ages of field B and A stars from photometry and theoretical isochrones. Our method produces more plausible ages for high-mass stars than previous age-dating techniques, which tend to underestimate stellar ages and their uncertainties.