17 resultados para PTYCHOPETALUM-OLACOIDES BENTHAM
Resumo:
Background Genotyping of hepatitis C virus (HCV) has become an essential tool for prognosis and prediction of treatment duration. The aim of this study was to compare two HCV genotyping methods: reverse hybridization line probe assay (LiPA v.1) and partial sequencing of the NS5B region. Methods Plasma of 171 patients with chronic hepatitis C were screened using both a commercial method (LiPA HCV Versant, Siemens, Tarrytown, NY, USA) and different primers targeting the NS5B region for PCR amplification and sequencing analysis. Results Comparison of the HCV genotyping methods showed no difference in the classification at the genotype level. However, a total of 82/171 samples (47.9%) including misclassification, non-subtypable, discrepant and inconclusive results were not classified by LiPA at the subtype level but could be discriminated by NS5B sequencing. Of these samples, 34 samples of genotype 1a and 6 samples of genotype 1b were classified at the subtype level using sequencing of NS5B. Conclusions Sequence analysis of NS5B for genotyping HCV provides precise genotype and subtype identification and an accurate epidemiological representation of circulating viral strains.
Resumo:
The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME - absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry.