20 resultados para POLYIMIDE MEMBRANES
Resumo:
Miltefosine (MT) is an alkylphospholipid approved for breast cancer metastasis and visceral leishmaniasis treatments, although the respective action mechanisms at the molecular level remain poorly understood. In this work, the interaction of miltefosine with the lipid component of stratum corneum (SC), the uppermost skin layer, was studied by electron paramagnetic resonance (EPR) spectroscopy of several fatty acid spin-labels. In addition, the effect of miltefosine on (i) spherical lipid vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and (ii) lipids extracted from SC was also investigated, by EPR and time-resolved polarized fluorescence methods. In SC of neonatal Wistar rats, 4% (w/w) miltefosine give rise to a large increase of the fluidity of the intercellular membranes, in the temperature range from 6 to about 50 degrees C. This effect becomes negligible at temperatures higher that ca. 60 degrees C. In large unilamelar vesicles of DPPC no significant changes could be observed with a miltefosine concentration 25% molar, in close analogy with the behavior of biomimetic vesicles prepared with bovine brain ceramide, behenic acid and cholesterol. In these last samples, a 25 mol% molar concentration of miltefosine produced only a modest decrease in the bilayer fluidity. Although miltefosine is not a feasible skin permeation enhancer due to its toxicity, the information provided in this work could be of utility in the development of a MT topical treatment of cutaneous leishmaniasis. Published by Elsevier B.V.
Resumo:
Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.
Resumo:
Electrospinning is used to produce fibers in the nanometer range by stretching a polymeric jet using electric fields of high magnitude. Chitosan is an abundant natural polymer that can be used to obtain biocompatible nanostructured membranes. The objectives of this work were to obtain nanostructured membranes based on blends of chitosan and polyoxyethylene (PEO), and evaluate their thermal and morphological properties, as well as their in vitro biocompatibility by agar diffusion cytotoxicity tests for three different cell lines. A nanostructured fibrous membrane with fiber diameters in the order of 200 nm was obtained, which presented a rough surface and thickness ranging from one to two millimeters. The results of the cytotoxicity tests evidenced that the chitosan/PEO membranes are non-toxic to the cells studied in this work. Further, the electrospinning technique was effective in obtaining nanostructured chitosan/PEO membranes, which showed biocompatibility according to in vitro preliminary tests using the cell lines.
Resumo:
Biological membranes are constituted from lipid bilayers and proteins. Investigation of protein-membrane interaction, essential for biological function of cells, must rest upon solid knowledge of lipid bilayer behavior. Thus, extensive studies of an experimental model for membranes, lipid bilayers in water solution, have been undertaken in the last decades. These systems present structural, thermal and electrical properties which depend on temperature, ionic strength or concentration. In this talk, we shall discuss statistical models for lipid bilayers, as well as the relation between their properties and results for properties of lipid dispersions investigated by the laboratories supervised by Teresa Lamy (IF-USP) and Amando Ito (FFCL-USP).
Resumo:
Brain fatty acid-binding protein (B-FABP) interacts with biological membranes and delivers polyunsaturated fatty acids (FAs) via a collisional mechanism. The binding of FAs in the protein and the interaction with membranes involve a motif called "portal region", formed by two small α-helices, A1 and A2, connected by a loop. We used a combination of site-directed mutagenesis and electron spin resonance to probe the changes in the protein and in the membrane model induced by their interaction. Spin labeled B-FABP mutants and lipidic spin probes incorporated into a membrane model confirmed that BFABP interacts with micelles through the portal region and led to structural changes in the protein as well in the micelles. These changes were greater in the presence of LPG when compared to the LPC models. ESR spectra of B-FABP labeled mutants showed the presence of two groups of residues that responded to the presence of micelles in opposite ways. In the presence of lysophospholipids, group I of residues, whose side chains point outwards from the contact region between the helices, had their mobility decreased in an environment of lower polarity when compared to the same residues in solution. The second group, composed by residues with side chains situated at the interface between the α-helices, experienced an increase in mobility in the presence of the model membranes. These modifications in the ESR spectra of B-FABP mutants are compatible with a less ordered structure of the portal region inner residues (group II) that is likely to facilitate the delivery of FAs to target membranes. On the other hand, residues in group I and micelle components have their mobilities decreased probably as a result of the formation of a collisional complex. Our results bring new insights for the understanding of the gating and delivery mechanisms of FABPs.