17 resultados para Otto, Saint, Bp. of Bamberg, 1060 (ca.)-1139.
Resumo:
Moraes, MR, Bacurau, RFP, Casarini, DE, Jara, ZP, Ronchi, FA, Almeida, SS, Higa, EMS, Pudo, MA, Rosa, TS, Haro, AS, Barros, CC, Pesquero, JB, Wurtele, M, and Araujo, RC. Chronic conventional resistance exercise reduces blood pressure in stage 1 hypertensive men. J Strength Cond Res 26(4): 1122-1129, 2012-To investigate the antihypertensive effects of conventional resistance exercise (RE) on the blood pressure (BP) of hypertensive subjects, 15 middle-aged (46 +/- 3 years) hypertensive volunteers, deprived of antihypertensive medication (reaching 153 +/- 6/93 +/- 2 mmHg systolic/diastolic BP after a 6-week medication washout period) were submitted to a 12-week conventional RE training program (3 sets of 12 repetitions at 60% 1 repetition maximum, 3 times a week on nonconsecutive days). Blood pressure was measured in all phases of the study (washout, training, detraining). Additionally, the plasma levels of several vasodilators or vasoconstrictors that potentially could be involved with the effects of RE on BP were evaluated pre- and posttraining. Conventional RE significantly reduced systolic, diastolic, and mean BP, respectively, by an average of 16 (p < 0.001), 12 (p < 0.01), and 13 mm Hg (p < 0.01) to prehypertensive values. There were no significant changes of vasoactive factors from the kallikrein-kinin or renin-angiotensin systems. After the RE training program, the BP values remained stable during a 4-week detraining period. Taken together, this study shows for the first time that conventional moderate-intensity RE alone is able to reduce the BP of stage 1 hypertensive subjects free of antihypertensive medication. Moreover, the benefits of BP reduction achieved with RE training remained unchanged for up to 4 weeks without exercise.
Resumo:
Objective: To evaluate the systemic blood pressure (BP) during daytime and nighttime in children with sleep breathing disorders (SBD) and compare parameters of BP in children with diagnosis of obstructive sleep apnea syndrome (OSA) to those one with primary snoring (PS). Methods: Children, both genders, aged from 8 to 12 years, with symptoms of SBD realized an overnight polysomnography followed by a 24 h recording of ambulatory BP. Results: All subjects presented with a history of snoring 7 nights per week. Children who have apnea/hipoapnea index >= four or a apnea index >= one presented a mean BP of 93 +/- 7 mmHg and 85 +/- 9 mmHg diurnal and nocturnal respectively whereas children who have a apnea/hipoapnea < four or a apnea index < one presented 90 +/- 7 mmHg and 77 +/- 2 mmHg. Eight children out of fourteen, from OSA group, lost the physiologic nocturnal dipping of the blood pressure. Among OSA children 57% were considered non-dippers. Two (16%) have presented absence of nocturnal dipping among children with primary snoring. The possibility of OSA children loosing physiologic blood pressure dipping was 6.66 higher than the possibilities of patients from PS group. Discussion: Our results indicate that children with sleep apnea syndrome exhibit a higher 24 h blood pressure when compared with those of primary snoring in form of decreased degree of nocturnal dipping and increased levels of diastolic and mean blood pressure, according to previous studies in literature. OSA in children seems to be associated to the development of hypertension or other cardiovascular disease. (C) 2012 Elsevier Ireland Ltd. All rights reserved.