18 resultados para Omni-Lie Algebras
Resumo:
We prove that any two Poisson dependent elements in a free Poisson algebra and a free Poisson field of characteristic zero are algebraically dependent, thus answering positively a question from Makar-Limanov and Umirbaev (2007) [8]. We apply this result to give a new proof of the tameness of automorphisms for free Poisson algebras of rank two (see Makar-Limanov and Umirbaev (2011) [9], Makar-Limanov et al. (2009) [10]). (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we introduce and study a class of algebras which we call ada algebras. An artin algebra is ada if every indecomposable projective and every indecomposable injective module lies in the union of the left and the right parts of the module category. We describe the Auslander-Reiten components of an ada algebra which is not quasi-tilted, showing in particular that its representation theory is entirely contained in that of its left and right supports, which are both tilted algebras. Also, we prove that an ada algebra over an algebraically closed field is simply connected if and only if its first Hochschild cohomology group vanishes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We deal with homogeneous isotropic turbulence and use the two-point velocity correlation tensor field (parametrized by the time variable t) of the velocity fluctuations to equip an affine space K3 of the correlation vectors by a family of metrics. It was shown in Grebenev and Oberlack (J Nonlinear Math Phys 18:109–120, 2011) that a special form of this tensor field generates the so-called semi-reducible pseudo-Riemannian metrics ds2(t) in K3. This construction presents the template for embedding the couple (K3, ds2(t)) into the Euclidean space R3 with the standard metric. This allows to introduce into the consideration the function of length between the fluid particles, and the accompanying important problem to address is to find out which transformations leave the statistic of length to be invariant that presents a basic interest of the paper. Also we classify the geometry of the particles configuration at least locally for a positive Gaussian curvature of this configuration and comment the case of a negative Gaussian curvature.